与えられた数式 $\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}$ を簡単にせよ。

代数学式の計算有理化平方根
2025/7/26

1. 問題の内容

与えられた数式 5+252\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} を簡単にせよ。

2. 解き方の手順

分母の有理化を行う。分母の 52\sqrt{5} - \sqrt{2} に共役な 5+2\sqrt{5} + \sqrt{2} を分子と分母の両方にかける。
5+252=(5+2)(5+2)(52)(5+2)\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{(\sqrt{5} + \sqrt{2})(\sqrt{5} + \sqrt{2})}{(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})}
分子を展開する。
(5+2)(5+2)=(5)2+252+(2)2=5+210+2=7+210(\sqrt{5} + \sqrt{2})(\sqrt{5} + \sqrt{2}) = (\sqrt{5})^2 + 2\sqrt{5}\sqrt{2} + (\sqrt{2})^2 = 5 + 2\sqrt{10} + 2 = 7 + 2\sqrt{10}
分母を展開する。
(52)(5+2)=(5)2(2)2=52=3(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2}) = (\sqrt{5})^2 - (\sqrt{2})^2 = 5 - 2 = 3
したがって、
5+252=7+2103\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{7 + 2\sqrt{10}}{3}

3. 最終的な答え

7+2103\frac{7 + 2\sqrt{10}}{3}

「代数学」の関連問題

与えられた不等式 $3 \cdot 9^x - 28 \cdot 3^x + 9 > 0$ を解く問題です。

指数不等式二次不等式置換因数分解
2025/7/26

問題は、指定された基本行列を書き出すことです。具体的には、以下の2つの行列を求める必要があります。 1. 3x3行列 $C_{2,3}(-4)$

線形代数行列基本行列
2025/7/26

写真に写っている数学の問題のうち、5,6,7,8番の問題を解きます。 5. 次の式をできるだけ簡単にせよ。 (1) $(3^{\frac{3}{2}})^{\frac{1}{5}}$ ...

指数対数導関数平均変化率等差数列等比数列数列の和
2025/7/26

与えられた基本行列 $C_{i,j}(\alpha)$ を書き表す問題です。具体的には、 1. 3x3行列 $C_{2,3}(-4)$

行列基本行列線形代数
2025/7/26

与えられた3x3行列の行列式の値を求めます。問題文には、「転置行列で表し、転置行列の行列式の性質を用いて」とありますが、行列式を求めるだけなので、転置行列を用いる必要はありません。行列式を直接計算しま...

行列式線形代数行列余因子展開
2025/7/26

(1) $x = 1.25$, $y = 0.75$ のとき、$x^2 - y^2$ の値を求めなさい。 (2) $x = \sqrt{7} - 3$ のとき、$x^2 + 6x + 5$ の値を求め...

式の計算因数分解平方根代入
2025/7/26

3つの二次方程式が与えられており、それぞれの解を選択肢から選びます。 (1) $(x-2)(x-3) = 0$ (2) $2x^2 + 5x + 2 = 0$ (3) $2(x+3)(x-4) = x...

二次方程式因数分解方程式解の公式
2025/7/26

与えられた式 $3x(x-2) - 2x(x-3)$ を計算し、簡略化する。

式の計算分配法則同類項
2025/7/26

$y = -x^2 + 2ax - 4a + 5$で表される2次関数(放物線$C$)について、以下の問いに答える問題です。 (1) 点(1, 4)が放物線$C$上にあるときの$a$の値を求める。 (2...

二次関数放物線最大値最小値平方完成
2025/7/26

はい、承知いたしました。それでは、与えられた数学の問題を解いていきます。

因数分解二次式置換
2025/7/26