$\lim_{x \to -\infty} (\sqrt{4x^2 - 3x + 1} + 2x)$ を求めよ。解析学極限ルート有利化2025/7/261. 問題の内容limx→−∞(4x2−3x+1+2x)\lim_{x \to -\infty} (\sqrt{4x^2 - 3x + 1} + 2x)limx→−∞(4x2−3x+1+2x) を求めよ。2. 解き方の手順まず、4x2−3x+1\sqrt{4x^2 - 3x + 1}4x2−3x+1 を変形します。x→−∞x \to -\inftyx→−∞ なので、xxx は負の数であり、x2=∣x∣=−x\sqrt{x^2} = |x| = -xx2=∣x∣=−x です。4x2−3x+1=4x2(1−34x+14x2)=4x21−34x+14x2=2∣x∣1−34x+14x2=−2x1−34x+14x2\sqrt{4x^2 - 3x + 1} = \sqrt{4x^2(1 - \frac{3}{4x} + \frac{1}{4x^2})} = \sqrt{4x^2} \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}} = 2|x| \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}} = -2x \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}4x2−3x+1=4x2(1−4x3+4x21)=4x21−4x3+4x21=2∣x∣1−4x3+4x21=−2x1−4x3+4x21したがって、4x2−3x+1+2x=−2x1−34x+14x2+2x=2x(1−1−34x+14x2)\sqrt{4x^2 - 3x + 1} + 2x = -2x \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}} + 2x = 2x \left(1 - \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}\right)4x2−3x+1+2x=−2x1−4x3+4x21+2x=2x(1−1−4x3+4x21)次に、式を有利化します。2x(1−1−34x+14x2)=2x(1−1−34x+14x2)(1+1−34x+14x2)1+1−34x+14x2=2x1−(1−34x+14x2)1+1−34x+14x2=2x34x−14x21+1−34x+14x2=32−12x1+1−34x+14x2\begin{aligned} 2x \left(1 - \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}\right) &= 2x \frac{\left(1 - \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}\right) \left(1 + \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}\right)}{1 + \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}} \\ &= 2x \frac{1 - \left(1 - \frac{3}{4x} + \frac{1}{4x^2}\right)}{1 + \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}} \\ &= 2x \frac{\frac{3}{4x} - \frac{1}{4x^2}}{1 + \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}} \\ &= \frac{\frac{3}{2} - \frac{1}{2x}}{1 + \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}} \end{aligned}2x(1−1−4x3+4x21)=2x1+1−4x3+4x21(1−1−4x3+4x21)(1+1−4x3+4x21)=2x1+1−4x3+4x211−(1−4x3+4x21)=2x1+1−4x3+4x214x3−4x21=1+1−4x3+4x2123−2x1x→−∞x \to -\inftyx→−∞ のとき、1x→0\frac{1}{x} \to 0x1→0 なので、limx→−∞32−12x1+1−34x+14x2=32−01+1−0+0=321+1=322=34\lim_{x \to -\infty} \frac{\frac{3}{2} - \frac{1}{2x}}{1 + \sqrt{1 - \frac{3}{4x} + \frac{1}{4x^2}}} = \frac{\frac{3}{2} - 0}{1 + \sqrt{1 - 0 + 0}} = \frac{\frac{3}{2}}{1 + 1} = \frac{\frac{3}{2}}{2} = \frac{3}{4}x→−∞lim1+1−4x3+4x2123−2x1=1+1−0+023−0=1+123=223=433. 最終的な答え34\frac{3}{4}43