放物線 $y = 5(x+4)^2 + 8$ を放物線 $y = 5x^2$ に移す平行移動を求める問題です。

幾何学放物線平行移動頂点座標
2025/7/26

1. 問題の内容

放物線 y=5(x+4)2+8y = 5(x+4)^2 + 8 を放物線 y=5x2y = 5x^2 に移す平行移動を求める問題です。

2. 解き方の手順

平行移動を求めるには、それぞれの放物線の頂点の座標を求める必要があります。
まず、y=5(x+4)2+8y = 5(x+4)^2 + 8 の頂点の座標を求めます。この式は頂点形式で書かれており、頂点の座標は (4,8)(-4, 8) です。
次に、y=5x2y = 5x^2 の頂点の座標を求めます。この式も頂点形式で書かれており、y=5(x0)2+0y = 5(x-0)^2 + 0 と考えると、頂点の座標は (0,0)(0, 0) です。
放物線 y=5(x+4)2+8y = 5(x+4)^2 + 8 を放物線 y=5x2y = 5x^2 に移す平行移動は、点 (4,8)(-4, 8) を点 (0,0)(0, 0) に移す平行移動と同じです。
xx 軸方向の移動量は、移動後の xx 座標から移動前の xx 座標を引いたものです。つまり、0(4)=40 - (-4) = 4 です。
yy 軸方向の移動量は、移動後の yy 座標から移動前の yy 座標を引いたものです。つまり、08=80 - 8 = -8 です。
したがって、求める平行移動は、xx 軸方向に 44, yy 軸方向に 8-8 です。

3. 最終的な答え

x軸方向に4、y軸方向に-8

「幾何学」の関連問題

ベクトル $\vec{a}$ の大きさが2である ($|\vec{a}|=2$) とき、以下のベクトルを求めよ。 (1) $\vec{a}$ と同じ向きの単位ベクトル (2) $\vec{a}$ と逆...

ベクトルベクトルの演算単位ベクトルベクトルの平行
2025/7/26

直方体 ABCD-EFGH において、ベクトル $\vec{a} = \vec{AB}$, $\vec{b} = \vec{AD}$, $\vec{c} = \vec{AE}$ とするとき、以下のベク...

ベクトル空間ベクトル直方体
2025/7/26

一辺の長さが2の正八面体を正方形を底面とする2つの四角錐に分けたときの、底面の正方形の対角線の長さ、四角錐の高さ、および正八面体の体積を求める問題です。

正八面体体積四角錐対角線
2025/7/26

円周上に異なる10個の点があるとき、そのうち4個を選んで頂点とする四角形は何通りできるか求める問題です。

組み合わせ四角形組み合わせ
2025/7/26

2点A(-7)とB(9)を結ぶ線分ABについて、以下の点の座標を求める問題です。 (1) 線分ABを5:3に内分する点P (2) 線分ABを1:2に内分する点Q (3) 線分ABを1:3に外分する点R...

線分内分点外分点中点座標
2025/7/26

2つの直線 $y=x$ と $y=2x$ のなす角を2等分する直線 $y=mx$ ($m>0$) を求める。

角度直線三角関数加法定理
2025/7/26

数直線上に3点A(1), B(6), C(8)がある。 (1) 点Bは線分ACをどのような比に内分または外分するか。 (2) 点Cは線分ABをどのような比に内分または外分するか。 (3) 点Aは線分B...

数直線内分点外分点線分比
2025/7/26

三角形ABCにおいて、$AB = 12$、$BC = 16$、$AC = 9$である。角Aの二等分線が辺BCと交わる点をDとする。このとき、$BD:DC$を求める。

幾何三角形角の二等分線
2025/7/26

三角形ABCにおいて、$AB=12$, $BC=6$, $AC=9$である。角Aの外角の二等分線と辺BCの延長との交点をDとする。線分BDの長さを求めよ。

三角形角の二等分線外角の二等分線相似
2025/7/26

三角形ABCにおいて、$AB=5$, $BC=6$, $AC=3$である。角Aの二等分線と辺BCの交点をDとするとき、$BD:DC$を求めよ。

幾何三角形角の二等分線
2025/7/26