関数 $y = (x^3+2x)(x^2+x+2)(3x+1)$ を微分せよ。解析学微分関数の微分積の微分多項式2025/7/261. 問題の内容関数 y=(x3+2x)(x2+x+2)(3x+1)y = (x^3+2x)(x^2+x+2)(3x+1)y=(x3+2x)(x2+x+2)(3x+1) を微分せよ。2. 解き方の手順積の微分公式を用いる。y=uvwy = uvwy=uvw のとき、y′=u′vw+uv′w+uvw′y' = u'vw + uv'w + uvw'y′=u′vw+uv′w+uvw′ である。ここで、u=x3+2xu = x^3+2xu=x3+2x, v=x2+x+2v = x^2+x+2v=x2+x+2, w=3x+1w = 3x+1w=3x+1 とおく。それぞれの導関数は、u′=3x2+2u' = 3x^2+2u′=3x2+2v′=2x+1v' = 2x+1v′=2x+1w′=3w' = 3w′=3したがって、y′=(3x2+2)(x2+x+2)(3x+1)+(x3+2x)(2x+1)(3x+1)+(x3+2x)(x2+x+2)(3)y' = (3x^2+2)(x^2+x+2)(3x+1) + (x^3+2x)(2x+1)(3x+1) + (x^3+2x)(x^2+x+2)(3)y′=(3x2+2)(x2+x+2)(3x+1)+(x3+2x)(2x+1)(3x+1)+(x3+2x)(x2+x+2)(3)これを展開して整理する。まず、(3x2+2)(x2+x+2)(3x+1)=(3x4+3x3+6x2+2x2+2x+4)(3x+1)=(3x4+3x3+8x2+2x+4)(3x+1)=9x5+3x4+9x4+3x3+24x3+8x2+6x2+2x+12x+4=9x5+12x4+27x3+14x2+14x+4(3x^2+2)(x^2+x+2)(3x+1) = (3x^4+3x^3+6x^2+2x^2+2x+4)(3x+1) = (3x^4+3x^3+8x^2+2x+4)(3x+1) = 9x^5+3x^4+9x^4+3x^3+24x^3+8x^2+6x^2+2x+12x+4 = 9x^5+12x^4+27x^3+14x^2+14x+4(3x2+2)(x2+x+2)(3x+1)=(3x4+3x3+6x2+2x2+2x+4)(3x+1)=(3x4+3x3+8x2+2x+4)(3x+1)=9x5+3x4+9x4+3x3+24x3+8x2+6x2+2x+12x+4=9x5+12x4+27x3+14x2+14x+4次に、(x3+2x)(2x+1)(3x+1)=(x3+2x)(6x2+2x+3x+1)=(x3+2x)(6x2+5x+1)=6x5+5x4+x3+12x3+10x2+2x=6x5+5x4+13x3+10x2+2x(x^3+2x)(2x+1)(3x+1) = (x^3+2x)(6x^2+2x+3x+1) = (x^3+2x)(6x^2+5x+1) = 6x^5+5x^4+x^3+12x^3+10x^2+2x = 6x^5+5x^4+13x^3+10x^2+2x(x3+2x)(2x+1)(3x+1)=(x3+2x)(6x2+2x+3x+1)=(x3+2x)(6x2+5x+1)=6x5+5x4+x3+12x3+10x2+2x=6x5+5x4+13x3+10x2+2x最後に、3(x3+2x)(x2+x+2)=3(x5+x4+2x3+2x3+2x2+4x)=3(x5+x4+4x3+2x2+4x)=3x5+3x4+12x3+6x2+12x3(x^3+2x)(x^2+x+2) = 3(x^5+x^4+2x^3+2x^3+2x^2+4x) = 3(x^5+x^4+4x^3+2x^2+4x) = 3x^5+3x^4+12x^3+6x^2+12x3(x3+2x)(x2+x+2)=3(x5+x4+2x3+2x3+2x2+4x)=3(x5+x4+4x3+2x2+4x)=3x5+3x4+12x3+6x2+12xしたがって、y′=(9x5+12x4+27x3+14x2+14x+4)+(6x5+5x4+13x3+10x2+2x)+(3x5+3x4+12x3+6x2+12x)=(9+6+3)x5+(12+5+3)x4+(27+13+12)x3+(14+10+6)x2+(14+2+12)x+4=18x5+20x4+52x3+30x2+28x+4y' = (9x^5+12x^4+27x^3+14x^2+14x+4) + (6x^5+5x^4+13x^3+10x^2+2x) + (3x^5+3x^4+12x^3+6x^2+12x) = (9+6+3)x^5+(12+5+3)x^4+(27+13+12)x^3+(14+10+6)x^2+(14+2+12)x+4 = 18x^5+20x^4+52x^3+30x^2+28x+4y′=(9x5+12x4+27x3+14x2+14x+4)+(6x5+5x4+13x3+10x2+2x)+(3x5+3x4+12x3+6x2+12x)=(9+6+3)x5+(12+5+3)x4+(27+13+12)x3+(14+10+6)x2+(14+2+12)x+4=18x5+20x4+52x3+30x2+28x+43. 最終的な答えy′=18x5+20x4+52x3+30x2+28x+4y' = 18x^5 + 20x^4 + 52x^3 + 30x^2 + 28x + 4y′=18x5+20x4+52x3+30x2+28x+4