6次対称群 $S_6$ の元 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 6 & 1 & 3 \end{pmatrix}$ と $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 5 & 3 & 4 & 2 \end{pmatrix}$ に対して、以下の問いに答える。 (1) $\tau\sigma$ を求めよ。 (2) $\sigma^{-1}$ を求めよ。 (3) $\sigma$ を互換の積で表せ。 (4) $sgn(\sigma)$ を求めよ。

代数学群論置換対称群巡回置換互換符号
2025/7/26

1. 問題の内容

6次対称群 S6S_6 の元 σ=(123456245613)\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 6 & 1 & 3 \end{pmatrix}τ=(123456615342)\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 5 & 3 & 4 & 2 \end{pmatrix} に対して、以下の問いに答える。
(1) τσ\tau\sigma を求めよ。
(2) σ1\sigma^{-1} を求めよ。
(3) σ\sigma を互換の積で表せ。
(4) sgn(σ)sgn(\sigma) を求めよ。

2. 解き方の手順

(1) τσ\tau\sigma を求める。τσ\tau\sigmaσ\sigma を行った後に τ\tau を行うことを意味する。
まず、σ\sigma によって 1 は 2 に移り、τ\tau によって 2 は 1 に移るので、τσ\tau\sigma によって 1 は 1 に移る。
次に、σ\sigma によって 2 は 4 に移り、τ\tau によって 4 は 3 に移るので、τσ\tau\sigma によって 2 は 3 に移る。
同様に計算すると
3 \rightarrow 5 \rightarrow 4
4 \rightarrow 6 \rightarrow 2
5 \rightarrow 1 \rightarrow 6
6 \rightarrow 3 \rightarrow 5
となる。したがって、τσ=(123456134265)\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 4 & 2 & 6 & 5 \end{pmatrix}
(2) σ1\sigma^{-1} を求める。σ1\sigma^{-1}σ\sigma の逆置換である。σ=(123456245613)\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 6 & 1 & 3 \end{pmatrix} であるから、σ1=(245613123456)\sigma^{-1} = \begin{pmatrix} 2 & 4 & 5 & 6 & 1 & 3 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} となる。上段を小さい順に並び替えると、σ1=(123456516234)\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 6 & 2 & 3 & 4 \end{pmatrix}
(3) σ\sigma を互換の積で表す。
σ=(123456245613)\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 6 & 1 & 3 \end{pmatrix} を巡回置換で表すと σ=(1 2 4 6 3 5)\sigma = (1\ 2\ 4\ 6\ 3\ 5) となる。
巡回置換は互換の積で表すことができる。(1 2 4 6 3 5)=(1 2)(2 4)(4 6)(6 3)(3 5)(1\ 2\ 4\ 6\ 3\ 5) = (1\ 2)(2\ 4)(4\ 6)(6\ 3)(3\ 5)
(4) sgn(σ)sgn(\sigma) を求める。
σ\sigma は長さ6の巡回置換なので、長さ5の互換の積で表せる。
sgn(σ)=(1)5=1sgn(\sigma) = (-1)^5 = -1

3. 最終的な答え

(1) τσ=(123456134265)\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 4 & 2 & 6 & 5 \end{pmatrix}
(2) σ1=(123456516234)\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 6 & 2 & 3 & 4 \end{pmatrix}
(3) σ=(1 2)(2 4)(4 6)(6 3)(3 5)\sigma = (1\ 2)(2\ 4)(4\ 6)(6\ 3)(3\ 5)
(4) sgn(σ)=1sgn(\sigma) = -1

「代数学」の関連問題

与えられた行列 $A = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & k \end{pmatrix}$ と $B = \begin{pmatri...

行列行列の積線形代数
2025/7/26

与えられた不等式 $3 \cdot 9^x - 28 \cdot 3^x + 9 > 0$ を解く問題です。

指数不等式二次不等式置換因数分解
2025/7/26

問題は、指定された基本行列を書き出すことです。具体的には、以下の2つの行列を求める必要があります。 1. 3x3行列 $C_{2,3}(-4)$

線形代数行列基本行列
2025/7/26

写真に写っている数学の問題のうち、5,6,7,8番の問題を解きます。 5. 次の式をできるだけ簡単にせよ。 (1) $(3^{\frac{3}{2}})^{\frac{1}{5}}$ ...

指数対数導関数平均変化率等差数列等比数列数列の和
2025/7/26

与えられた基本行列 $C_{i,j}(\alpha)$ を書き表す問題です。具体的には、 1. 3x3行列 $C_{2,3}(-4)$

行列基本行列線形代数
2025/7/26

与えられた3x3行列の行列式の値を求めます。問題文には、「転置行列で表し、転置行列の行列式の性質を用いて」とありますが、行列式を求めるだけなので、転置行列を用いる必要はありません。行列式を直接計算しま...

行列式線形代数行列余因子展開
2025/7/26

(1) $x = 1.25$, $y = 0.75$ のとき、$x^2 - y^2$ の値を求めなさい。 (2) $x = \sqrt{7} - 3$ のとき、$x^2 + 6x + 5$ の値を求め...

式の計算因数分解平方根代入
2025/7/26

3つの二次方程式が与えられており、それぞれの解を選択肢から選びます。 (1) $(x-2)(x-3) = 0$ (2) $2x^2 + 5x + 2 = 0$ (3) $2(x+3)(x-4) = x...

二次方程式因数分解方程式解の公式
2025/7/26

与えられた式 $3x(x-2) - 2x(x-3)$ を計算し、簡略化する。

式の計算分配法則同類項
2025/7/26

$y = -x^2 + 2ax - 4a + 5$で表される2次関数(放物線$C$)について、以下の問いに答える問題です。 (1) 点(1, 4)が放物線$C$上にあるときの$a$の値を求める。 (2...

二次関数放物線最大値最小値平方完成
2025/7/26