## 問題の内容代数学対数対数の性質指数底の変換2025/7/26## 問題の内容与えられた5つの対数に関する式をそれぞれ簡単にします。(1) log28+log212−log24\log_2 8 + \log_2 \frac{1}{\sqrt{2}} - \log_2 4log28+log221−log24(2) log3272−log318+log326\log_3 \frac{27}{\sqrt{2}} - \log_3 18 + \log_3 2\sqrt{6}log3227−log318+log326(3) log23⋅log327⋅log2725⋅log532\log_2 3 \cdot \log_3 27 \cdot \log_{27} 25 \cdot \log_5 32log23⋅log327⋅log2725⋅log532(4) 214log21162^{\frac{1}{4} \log_2 \frac{1}{16}}241log2161(5) log2[log2{log2(log216)}]\log_2[\log_2\{\log_2(\log_2 16)\}]log2[log2{log2(log216)}]## 解き方の手順**(1) log28+log212−log24\log_2 8 + \log_2 \frac{1}{\sqrt{2}} - \log_2 4log28+log221−log24**まず、各項を計算します。log28=log223=3\log_2 8 = \log_2 2^3 = 3log28=log223=3log212=log22−12=−12\log_2 \frac{1}{\sqrt{2}} = \log_2 2^{-\frac{1}{2}} = -\frac{1}{2}log221=log22−21=−21log24=log222=2\log_2 4 = \log_2 2^2 = 2log24=log222=2したがって、log28+log212−log24=3−12−2=1−12=12\log_2 8 + \log_2 \frac{1}{\sqrt{2}} - \log_2 4 = 3 - \frac{1}{2} - 2 = 1 - \frac{1}{2} = \frac{1}{2}log28+log221−log24=3−21−2=1−21=21**(2) log3272−log318+log326\log_3 \frac{27}{\sqrt{2}} - \log_3 18 + \log_3 2\sqrt{6}log3227−log318+log326**対数の性質を利用して、式をまとめます。log3272−log318+log326=log3272⋅2618=log327⋅26182\log_3 \frac{27}{\sqrt{2}} - \log_3 18 + \log_3 2\sqrt{6} = \log_3 \frac{\frac{27}{\sqrt{2}} \cdot 2\sqrt{6}}{18} = \log_3 \frac{27 \cdot 2\sqrt{6}}{18\sqrt{2}}log3227−log318+log326=log318227⋅26=log318227⋅2627⋅26182=546182=362=33\frac{27 \cdot 2\sqrt{6}}{18\sqrt{2}} = \frac{54\sqrt{6}}{18\sqrt{2}} = 3\sqrt{\frac{6}{2}} = 3\sqrt{3}18227⋅26=182546=326=33したがって、log3272−log318+log326=log333=log3(3⋅312)=log3332=32\log_3 \frac{27}{\sqrt{2}} - \log_3 18 + \log_3 2\sqrt{6} = \log_3 3\sqrt{3} = \log_3 (3 \cdot 3^{\frac{1}{2}}) = \log_3 3^{\frac{3}{2}} = \frac{3}{2}log3227−log318+log326=log333=log3(3⋅321)=log3323=23**(3) log23⋅log327⋅log2725⋅log532\log_2 3 \cdot \log_3 27 \cdot \log_{27} 25 \cdot \log_5 32log23⋅log327⋅log2725⋅log532**底の変換公式を利用します。logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a}logab=logcalogcblog23⋅log327⋅log2725⋅log532=log23⋅log333⋅log3352⋅log525\log_2 3 \cdot \log_3 27 \cdot \log_{27} 25 \cdot \log_5 32 = \log_2 3 \cdot \log_3 3^3 \cdot \log_{3^3} 5^2 \cdot \log_5 2^5log23⋅log327⋅log2725⋅log532=log23⋅log333⋅log3352⋅log525=log23⋅3⋅23log35⋅5log52=log23⋅2log35⋅5log52= \log_2 3 \cdot 3 \cdot \frac{2}{3} \log_3 5 \cdot 5 \log_5 2 = \log_2 3 \cdot 2 \log_3 5 \cdot 5 \log_5 2=log23⋅3⋅32log35⋅5log52=log23⋅2log35⋅5log52=10⋅log23⋅log35⋅log52=10⋅log3log2⋅log5log3⋅log2log5=10⋅1=10= 10 \cdot \log_2 3 \cdot \log_3 5 \cdot \log_5 2 = 10 \cdot \frac{\log 3}{\log 2} \cdot \frac{\log 5}{\log 3} \cdot \frac{\log 2}{\log 5} = 10 \cdot 1 = 10=10⋅log23⋅log35⋅log52=10⋅log2log3⋅log3log5⋅log5log2=10⋅1=10**(4) 214log21162^{\frac{1}{4} \log_2 \frac{1}{16}}241log2161**116=2−4\frac{1}{16} = 2^{-4}161=2−4であるから、log2116=log22−4=−4\log_2 \frac{1}{16} = \log_2 2^{-4} = -4log2161=log22−4=−4したがって、214log2116=214(−4)=2−1=122^{\frac{1}{4} \log_2 \frac{1}{16}} = 2^{\frac{1}{4} (-4)} = 2^{-1} = \frac{1}{2}241log2161=241(−4)=2−1=21**(5) log2[log2{log2(log216)}]\log_2[\log_2\{\log_2(\log_2 16)\}]log2[log2{log2(log216)}]**log216=log224=4\log_2 16 = \log_2 2^4 = 4log216=log224=4log24=log222=2\log_2 4 = \log_2 2^2 = 2log24=log222=2log22=1\log_2 2 = 1log22=1したがって、log2[log2{log2(log216)}]=log2[log2{log2(4)}]=log2[log2{2}]=log2[1]=0\log_2[\log_2\{\log_2(\log_2 16)\}] = \log_2[\log_2\{\log_2(4)\}] = \log_2[\log_2\{2\}] = \log_2[1] = 0log2[log2{log2(log216)}]=log2[log2{log2(4)}]=log2[log2{2}]=log2[1]=0## 最終的な答え(1) 12\frac{1}{2}21(2) 32\frac{3}{2}23(3) 101010(4) 12\frac{1}{2}21(5) 000