$(\sqrt{2}+4)(2\sqrt{2}-3)$ を計算せよ。代数学式の展開平方根の計算2025/7/271. 問題の内容(2+4)(22−3)(\sqrt{2}+4)(2\sqrt{2}-3)(2+4)(22−3) を計算せよ。2. 解き方の手順分配法則を用いて展開します。(2+4)(22−3)=2⋅22+2⋅(−3)+4⋅22+4⋅(−3)(\sqrt{2}+4)(2\sqrt{2}-3) = \sqrt{2} \cdot 2\sqrt{2} + \sqrt{2} \cdot (-3) + 4 \cdot 2\sqrt{2} + 4 \cdot (-3)(2+4)(22−3)=2⋅22+2⋅(−3)+4⋅22+4⋅(−3)計算を進めます。2⋅22=2⋅(2)2=2⋅2=4\sqrt{2} \cdot 2\sqrt{2} = 2 \cdot (\sqrt{2})^2 = 2 \cdot 2 = 42⋅22=2⋅(2)2=2⋅2=42⋅(−3)=−32\sqrt{2} \cdot (-3) = -3\sqrt{2}2⋅(−3)=−324⋅22=824 \cdot 2\sqrt{2} = 8\sqrt{2}4⋅22=824⋅(−3)=−124 \cdot (-3) = -124⋅(−3)=−12したがって、(2+4)(22−3)=4−32+82−12(\sqrt{2}+4)(2\sqrt{2}-3) = 4 - 3\sqrt{2} + 8\sqrt{2} - 12(2+4)(22−3)=4−32+82−12同類項をまとめます。(2+4)(22−3)=(4−12)+(−32+82)=−8+52(\sqrt{2}+4)(2\sqrt{2}-3) = (4 - 12) + (-3\sqrt{2} + 8\sqrt{2}) = -8 + 5\sqrt{2}(2+4)(22−3)=(4−12)+(−32+82)=−8+523. 最終的な答え−8+52-8 + 5\sqrt{2}−8+52