整数 $n$ に対して、「$n^2$ が偶数ならば、$n$ は偶数である」という命題を、対偶を用いて証明する。

数論整数の性質命題対偶証明
2025/7/27

1. 問題の内容

整数 nn に対して、「n2n^2 が偶数ならば、nn は偶数である」という命題を、対偶を用いて証明する。

2. 解き方の手順

与えられた命題の対偶を考える。元の命題が真であれば、対偶も真である。
元の命題: 「n2n^2 が偶数ならば、nn は偶数である」
対偶: 「nn が奇数ならば、n2n^2 は奇数である」
対偶を証明する。
nn が奇数であるとき、nn は整数 kk を用いて、n=2k+1n = 2k + 1 と表せる。
このとき、n2n^2
n2=(2k+1)2=4k2+4k+1=2(2k2+2k)+1n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1
と表せる。ここで、2k2+2k2k^2 + 2k は整数であるから、n2n^2 は奇数である。
したがって、「nn が奇数ならば、n2n^2 は奇数である」という対偶が真であることが示された。
よって、元の命題「n2n^2 が偶数ならば、nn は偶数である」も真である。

3. 最終的な答え

n2n^2 が偶数ならば、nn は偶数である。

「数論」の関連問題

$m$, $n$, $k$ は自然数とする。命題「積 $mnk$ は偶数ならば、$m$, $n$, $k$ の少なくとも1つは偶数である」が真であることを証明する。

命題対偶整数の性質偶数奇数証明
2025/7/27

整数 $n$ について、「$n^3 + 1$ が奇数ならば、$n$ は偶数である」という命題を、対偶を用いて証明する。

命題証明対偶整数の性質偶数奇数代数
2025/7/27

数列 $\{a_n\}$ があり、$a_1 = 3$, $a_2 = 2$ で、 $n \ge 2$ のとき $a_{n+1} = a_n^2 + a_n - 1$ を満たします。また、$n \ge ...

数列漸化式数学的帰納法代数
2025/7/27

問題は、3の累乗を並べた表とその各項を5で割った余りの表に関する問題です。 (1) 下の段(5で割った余り)の数のうち最も大きい数を求めます。 (2) 下の段の数を左から順に足していき、1番目から12...

剰余周期性累乗等差数列約数と倍数
2025/7/27

与えられた3つの数(50, 210, 693)をそれぞれ素数の積で表す問題です。

素因数分解素数整数の性質
2025/7/27

正の整数 $a, b, c$ に対して $M = 3^a + 3^b + 3^c + 1$ を定義します。この $M$ が立方数となるような $a, b, c$ の組を求めます。 (1) $a < b...

整数立方数指数
2025/7/26

$n$ は自然数とする。$n+1$ は $6$ の倍数であり、$n+4$ は $9$ の倍数であるとき、$n+13$ は $18$ の倍数であることを証明する。

整数の性質倍数合同式証明
2025/7/26

$n$ は正の整数とする。$n$, 175, 250 の最大公約数が 25, 最小公倍数が 3500 であるような $n$ をすべて求めよ。

最大公約数最小公倍数素因数分解整数の性質
2025/7/26

20の倍数であり、正の約数の個数が15個である自然数 $n$ を全て求める問題です。

約数素因数分解倍数
2025/7/26

自然数 $n$ は20の倍数であり、正の約数の個数が15個である。このような自然数 $n$ をすべて求める。

約数素因数分解倍数整数の性質
2025/7/26