三角形ABCの辺BC, CA, AB上に点P, Q, Rがあり、P, Q, Rは同一直線上にある。AB:RB=4:1, BC:CP=2:1のとき、CQ:QAの比を求める問題。

幾何学幾何三角形メネラウスの定理
2025/7/27

1. 問題の内容

三角形ABCの辺BC, CA, AB上に点P, Q, Rがあり、P, Q, Rは同一直線上にある。AB:RB=4:1, BC:CP=2:1のとき、CQ:QAの比を求める問題。

2. 解き方の手順

メネラウスの定理を利用する。
メネラウスの定理より、以下の式が成り立つ。
ARRBBPPCCQQA=1\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1
問題文より、AB:RB = 4:1であるから、AR:RB = (4-1):1 = 3:1。よって、
ARRB=31=3\frac{AR}{RB} = \frac{3}{1} = 3
問題文より、BC:CP = 2:1であるから、BP:PC = (2-1):1 = 1:1。よって、
BPPC=11=1\frac{BP}{PC} = \frac{1}{1} = 1
上記の値をメネラウスの定理の式に代入する。
31CQQA=13 \cdot 1 \cdot \frac{CQ}{QA} = 1
CQQA=13\frac{CQ}{QA} = \frac{1}{3}
したがって、CQ:QA = 1:3

3. 最終的な答え

CQ:QA = 1:3

「幾何学」の関連問題

問題文は以下の通りです。 xy平面上に点A(8, 4)と直線l: x + 2y - 6 = 0がある。 (1) 直線lに関してAと対称な点をA'とするとき、A'の座標を求めよ。 (2) 2点(1, 3...

座標平面円の方程式接する円
2025/7/28

平行四辺形ABCDにおいて、$AF:FD = 3:1$、$BE:EC = 1:1$、$CH:HG = 1:2$であるとき、三角形AIFと四角形ECDFの面積の比を最も簡単な整数の比で表す問題です。

平行四辺形面積比メネラウスの定理相似ベクトル
2025/7/28

四角形ABCDは平行四辺形であり、AF:FD=3:1、BE=EC、CH:HG=1:2である。このとき、AI:IHを最も簡単な整数の比で表す。Iは線分AGと線分BFの交点、Hは線分AGと線分CDの交点で...

ベクトル平行四辺形座標平面
2025/7/28

与えられた方程式を満たす複素数 $z$ が表す図形を複素平面上に図示する問題です。 (1) $|z| = 1$ (2) $\arg z = \frac{\pi}{4}$

複素平面複素数絶対値偏角直線
2025/7/28

円に内接する四角形ABCDにおいて、$AB=1$, $BC=CD=\sqrt{2}$, $DA=\sqrt{3}$とする。 (1) $\cos A$, $BD$, $OC$(円の中心からCまでの距離、...

円に内接する四角形余弦定理正弦定理面積三角比
2025/7/28

与えられた図において、角度 $x$ の値を求める問題です。大きな三角形の3つの角度はそれぞれ $60^\circ$、$40^\circ$、$35^\circ$で与えられています。

角度三角形内角外角
2025/7/28

点A(2, 0), B(0, 2) があるとき、次の条件を満たす点Pの軌跡の方程式を求める問題です。 (1) $AP^2 + BP^2 = 6$ (2) $AP : BP = 1 : 2$ (3) $...

軌跡円の方程式直線の方程式距離
2025/7/28

四面体OABCの辺OA, BC, OC, AB上に点P, Q, R, SがそれぞれOP:PA = 1:1, BQ:QC = 2:1, OR:RC = 1:2, AS:SB = 1:4となるようにとられ...

ベクトル空間図形四面体直線の方程式内分
2025/7/28

原点をOとする座標平面上に2点A(2, 1), B(1, 2)がある。 $\vec{OP} = s\vec{OA} + t\vec{OB}$ を満たす点P(x, y)について、sとtが以下の条件を満た...

ベクトル座標平面線分平行四辺形三角形存在範囲
2025/7/28

立方体ABCD-EFGHにおいて、点Pが頂点Aを出発し、他のすべての頂点を一度だけ通り、再びAに戻る経路は何通りあるか。

立方体経路場合の数空間図形
2025/7/28