与えられた数式 $(x^2 - 3xy + y^2)(x^2 - 2xy - y^2)$ を展開して簡単にせよ。代数学式の展開多項式代数2025/7/271. 問題の内容与えられた数式 (x2−3xy+y2)(x2−2xy−y2)(x^2 - 3xy + y^2)(x^2 - 2xy - y^2)(x2−3xy+y2)(x2−2xy−y2) を展開して簡単にせよ。2. 解き方の手順数式を展開します。(x2−3xy+y2)(x2−2xy−y2) (x^2 - 3xy + y^2)(x^2 - 2xy - y^2) (x2−3xy+y2)(x2−2xy−y2)=x2(x2−2xy−y2)−3xy(x2−2xy−y2)+y2(x2−2xy−y2) = x^2(x^2 - 2xy - y^2) - 3xy(x^2 - 2xy - y^2) + y^2(x^2 - 2xy - y^2) =x2(x2−2xy−y2)−3xy(x2−2xy−y2)+y2(x2−2xy−y2)=(x4−2x3y−x2y2)+(−3x3y+6x2y2+3xy3)+(x2y2−2xy3−y4) = (x^4 - 2x^3y - x^2y^2) + (-3x^3y + 6x^2y^2 + 3xy^3) + (x^2y^2 - 2xy^3 - y^4) =(x4−2x3y−x2y2)+(−3x3y+6x2y2+3xy3)+(x2y2−2xy3−y4)=x4−2x3y−x2y2−3x3y+6x2y2+3xy3+x2y2−2xy3−y4 = x^4 - 2x^3y - x^2y^2 - 3x^3y + 6x^2y^2 + 3xy^3 + x^2y^2 - 2xy^3 - y^4 =x4−2x3y−x2y2−3x3y+6x2y2+3xy3+x2y2−2xy3−y4=x4−5x3y+6x2y2+xy3−y4 = x^4 - 5x^3y + 6x^2y^2 + xy^3 - y^4 =x4−5x3y+6x2y2+xy3−y43. 最終的な答えx4−5x3y+6x2y2+xy3−y4x^4 - 5x^3y + 6x^2y^2 + xy^3 - y^4x4−5x3y+6x2y2+xy3−y4