画像にある数式問題のうち、以下の3問を解きます。 (16) $(\sqrt{5} + 7\sqrt{2})(\sqrt{5} - \sqrt{2})$ (18) $(\sqrt{6} + 2)^2 - (\sqrt{6} - 2)^2$ (19) $\sqrt{2}(2\sqrt{2}-4) - \frac{4}{\sqrt{2}(\sqrt{2}-2)}$

代数学式の展開平方根有理化計算
2025/7/27

1. 問題の内容

画像にある数式問題のうち、以下の3問を解きます。
(16) (5+72)(52)(\sqrt{5} + 7\sqrt{2})(\sqrt{5} - \sqrt{2})
(18) (6+2)2(62)2(\sqrt{6} + 2)^2 - (\sqrt{6} - 2)^2
(19) 2(224)42(22)\sqrt{2}(2\sqrt{2}-4) - \frac{4}{\sqrt{2}(\sqrt{2}-2)}

2. 解き方の手順

(16) (5+72)(52)(\sqrt{5} + 7\sqrt{2})(\sqrt{5} - \sqrt{2}) を展開します。
(5+72)(52)=(5)252+7257(2)2(\sqrt{5} + 7\sqrt{2})(\sqrt{5} - \sqrt{2}) = (\sqrt{5})^2 - \sqrt{5}\sqrt{2} + 7\sqrt{2}\sqrt{5} - 7(\sqrt{2})^2
=510+7107×2=5+61014=6109= 5 - \sqrt{10} + 7\sqrt{10} - 7 \times 2 = 5 + 6\sqrt{10} - 14 = 6\sqrt{10} - 9
(18) (6+2)2(62)2(\sqrt{6} + 2)^2 - (\sqrt{6} - 2)^2 を展開します。
(6+2)2=(6)2+2×6×2+22=6+46+4=10+46(\sqrt{6} + 2)^2 = (\sqrt{6})^2 + 2 \times \sqrt{6} \times 2 + 2^2 = 6 + 4\sqrt{6} + 4 = 10 + 4\sqrt{6}
(62)2=(6)22×6×2+22=646+4=1046(\sqrt{6} - 2)^2 = (\sqrt{6})^2 - 2 \times \sqrt{6} \times 2 + 2^2 = 6 - 4\sqrt{6} + 4 = 10 - 4\sqrt{6}
(6+2)2(62)2=(10+46)(1046)=10+4610+46=86(\sqrt{6} + 2)^2 - (\sqrt{6} - 2)^2 = (10 + 4\sqrt{6}) - (10 - 4\sqrt{6}) = 10 + 4\sqrt{6} - 10 + 4\sqrt{6} = 8\sqrt{6}
(19) 2(224)42(22)\sqrt{2}(2\sqrt{2}-4) - \frac{4}{\sqrt{2}(\sqrt{2}-2)} を計算します。
2(224)=22242=2×242=442\sqrt{2}(2\sqrt{2}-4) = 2\sqrt{2}\sqrt{2} - 4\sqrt{2} = 2 \times 2 - 4\sqrt{2} = 4 - 4\sqrt{2}
42(22)=42222=4222=4222×2+222+22=4(2+22)22(22)2=8+8248=8+824=222\frac{4}{\sqrt{2}(\sqrt{2}-2)} = \frac{4}{\sqrt{2}\sqrt{2} - 2\sqrt{2}} = \frac{4}{2 - 2\sqrt{2}} = \frac{4}{2 - 2\sqrt{2}} \times \frac{2 + 2\sqrt{2}}{2 + 2\sqrt{2}} = \frac{4(2 + 2\sqrt{2})}{2^2 - (2\sqrt{2})^2} = \frac{8 + 8\sqrt{2}}{4 - 8} = \frac{8 + 8\sqrt{2}}{-4} = -2 - 2\sqrt{2}
2(224)42(22)=(442)(222)=442+2+22=622\sqrt{2}(2\sqrt{2}-4) - \frac{4}{\sqrt{2}(\sqrt{2}-2)} = (4 - 4\sqrt{2}) - (-2 - 2\sqrt{2}) = 4 - 4\sqrt{2} + 2 + 2\sqrt{2} = 6 - 2\sqrt{2}

3. 最終的な答え

(16) 61096\sqrt{10} - 9
(18) 868\sqrt{6}
(19) 6226 - 2\sqrt{2}