(1) 絶対値を含む方程式 $|x| = 6$ を解きます。 (2) 絶対値を含む不等式 $|x| \leq 6$ を解きます。

代数学絶対値方程式不等式数直線
2025/7/27

1. 問題の内容

(1) 絶対値を含む方程式 x=6|x| = 6 を解きます。
(2) 絶対値を含む不等式 x6|x| \leq 6 を解きます。

2. 解き方の手順

(1) 方程式 x=6|x| = 6 を解く場合:
絶対値の定義から、xx66 または 6-6 のいずれかです。
したがって、x=6x = 6 または x=6x = -6 となります。
(2) 不等式 x6|x| \leq 6 を解く場合:
絶対値の定義から、xx6-6 以上 66 以下の範囲にあります。
つまり、6x6-6 \leq x \leq 6 となります。

3. 最終的な答え

(1) x=6,6x = -6, 6
(2) 6x6-6 \leq x \leq 6

「代数学」の関連問題

与えられた行列 $A = \begin{bmatrix} -6 & 6 \\ -2 & 2 \end{bmatrix}$ について、以下の問題を解きます。 (1) 核 Ker $A$ を求め、図示する...

線形代数行列線形空間ベクトル
2025/7/27

$p$ を定数とする。関数 $y=(x^2-2x)^2+6p(x^2-2x)+3p+1$ の最小値を $m$ とする。 (1) 最小値 $m$ を $p$ の式で表せ。 (2) $m$ の最大値を求め...

二次関数最大値最小値場合分け
2025/7/27

以下の連立一次方程式を解きます。 $3x - 7y + 5z = 0$ $x + y - z = 6$ $2x + 3y - 4z = 9$

連立一次方程式行列基本変形ガウスの消去法
2025/7/27

与えられた連立一次方程式 $3x - 7y + 5z = 0$ $x + y - z = 6$ $2x + 3y - 4z = 9$ を行基本変形を用いて解け。

連立一次方程式行列行基本変形
2025/7/27

与えられた連立一次方程式を解きます。 $2x - 3y = 1$ $-4x + 6y = 3$

連立一次方程式解の存在線形代数
2025/7/27

$x + y = 1$ かつ $0 \le x \le 2$ のとき、$x - 2y^2$ の最大値と最小値を求めよ。

二次関数最大値最小値不等式二次方程式
2025/7/27

与えられた二次式 $x^2 - 12x + 27$ を因数分解してください。

因数分解二次式二次方程式
2025/7/27

与えられた二次式 $a^2 + 13a + 42$ を因数分解する問題です。

因数分解二次式多項式
2025/7/27

問題は、与えられた式 $(y-5)^2 - 6(y-5) - 7$ を因数分解することです。

因数分解二次式代入
2025/7/27

次の式を因数分解します。 (1) $2ab - 8b$ (2) $21x^2 + 14xy$ (3) $3a^2b - 9ab^2$ (4) $2ab^2 + 5a^2b - 4abc$ (5) $x...

因数分解共通因数展開
2025/7/27