$\sin^{-1}(-\cos(\frac{3}{7}\pi))$ の値を求めよ。解析学逆三角関数三角関数計算2025/7/271. 問題の内容sin−1(−cos(37π))\sin^{-1}(-\cos(\frac{3}{7}\pi))sin−1(−cos(73π)) の値を求めよ。2. 解き方の手順まず、cos(37π)\cos(\frac{3}{7}\pi)cos(73π) を sin\sinsin で表すことを考えます。cos(θ)=sin(π2−θ)\cos(\theta) = \sin(\frac{\pi}{2} - \theta)cos(θ)=sin(2π−θ) の関係を利用します。したがって、cos(37π)=sin(π2−37π)=sin(7π−6π14)=sin(π14)\cos(\frac{3}{7}\pi) = \sin(\frac{\pi}{2} - \frac{3}{7}\pi) = \sin(\frac{7\pi - 6\pi}{14}) = \sin(\frac{\pi}{14})cos(73π)=sin(2π−73π)=sin(147π−6π)=sin(14π)次に、 sin−1(−cos(37π))\sin^{-1}(-\cos(\frac{3}{7}\pi))sin−1(−cos(73π)) を計算します。sin−1(−cos(37π))=sin−1(−sin(π14))\sin^{-1}(-\cos(\frac{3}{7}\pi)) = \sin^{-1}(-\sin(\frac{\pi}{14})) sin−1(−cos(73π))=sin−1(−sin(14π))sin(−x)=−sin(x)\sin(-x) = -\sin(x)sin(−x)=−sin(x) の関係を利用して、sin−1(−sin(π14))=sin−1(sin(−π14))=−π14\sin^{-1}(-\sin(\frac{\pi}{14})) = \sin^{-1}(\sin(-\frac{\pi}{14})) = -\frac{\pi}{14}sin−1(−sin(14π))=sin−1(sin(−14π))=−14π3. 最終的な答え−π14-\frac{\pi}{14}−14π