与えられた4つの関数 $z$ をそれぞれ $x$ と $y$ で偏微分する問題です。解析学偏微分多変数関数三角関数逆三角関数指数関数対数関数2025/7/271. 問題の内容与えられた4つの関数 zzz をそれぞれ xxx と yyy で偏微分する問題です。2. 解き方の手順(1) z=sin(x2+y2)z = \sin(x^2 + y^2)z=sin(x2+y2)* xxx で偏微分:∂z∂x=cos(x2+y2)⋅2x=2xcos(x2+y2)\frac{\partial z}{\partial x} = \cos(x^2 + y^2) \cdot 2x = 2x\cos(x^2 + y^2)∂x∂z=cos(x2+y2)⋅2x=2xcos(x2+y2)* yyy で偏微分:∂z∂y=cos(x2+y2)⋅2y=2ycos(x2+y2)\frac{\partial z}{\partial y} = \cos(x^2 + y^2) \cdot 2y = 2y\cos(x^2 + y^2)∂y∂z=cos(x2+y2)⋅2y=2ycos(x2+y2)(2) z=arcsin(xy)z = \arcsin(xy)z=arcsin(xy)* xxx で偏微分:∂z∂x=11−(xy)2⋅y=y1−x2y2\frac{\partial z}{\partial x} = \frac{1}{\sqrt{1 - (xy)^2}} \cdot y = \frac{y}{\sqrt{1 - x^2y^2}}∂x∂z=1−(xy)21⋅y=1−x2y2y* yyy で偏微分:∂z∂y=11−(xy)2⋅x=x1−x2y2\frac{\partial z}{\partial y} = \frac{1}{\sqrt{1 - (xy)^2}} \cdot x = \frac{x}{\sqrt{1 - x^2y^2}}∂y∂z=1−(xy)21⋅x=1−x2y2x(3) z=exyarctan(y)z = e^{xy}\arctan(y)z=exyarctan(y)* xxx で偏微分:∂z∂x=exy⋅y⋅arctan(y)=yexyarctan(y)\frac{\partial z}{\partial x} = e^{xy} \cdot y \cdot \arctan(y) = ye^{xy}\arctan(y)∂x∂z=exy⋅y⋅arctan(y)=yexyarctan(y)* yyy で偏微分:∂z∂y=exy⋅x⋅arctan(y)+exy⋅11+y2=xexyarctan(y)+exy1+y2\frac{\partial z}{\partial y} = e^{xy} \cdot x \cdot \arctan(y) + e^{xy} \cdot \frac{1}{1+y^2} = xe^{xy}\arctan(y) + \frac{e^{xy}}{1+y^2}∂y∂z=exy⋅x⋅arctan(y)+exy⋅1+y21=xexyarctan(y)+1+y2exy(4) z=xylog(2x+y)z = xy\log(2x + y)z=xylog(2x+y)* xxx で偏微分:∂z∂x=ylog(2x+y)+xy⋅22x+y=ylog(2x+y)+2xy2x+y\frac{\partial z}{\partial x} = y\log(2x + y) + xy \cdot \frac{2}{2x + y} = y\log(2x + y) + \frac{2xy}{2x + y}∂x∂z=ylog(2x+y)+xy⋅2x+y2=ylog(2x+y)+2x+y2xy* yyy で偏微分:∂z∂y=xlog(2x+y)+xy⋅12x+y=xlog(2x+y)+xy2x+y\frac{\partial z}{\partial y} = x\log(2x + y) + xy \cdot \frac{1}{2x + y} = x\log(2x + y) + \frac{xy}{2x + y}∂y∂z=xlog(2x+y)+xy⋅2x+y1=xlog(2x+y)+2x+yxy3. 最終的な答え(1)∂z∂x=2xcos(x2+y2)\frac{\partial z}{\partial x} = 2x\cos(x^2 + y^2)∂x∂z=2xcos(x2+y2)∂z∂y=2ycos(x2+y2)\frac{\partial z}{\partial y} = 2y\cos(x^2 + y^2)∂y∂z=2ycos(x2+y2)(2)∂z∂x=y1−x2y2\frac{\partial z}{\partial x} = \frac{y}{\sqrt{1 - x^2y^2}}∂x∂z=1−x2y2y∂z∂y=x1−x2y2\frac{\partial z}{\partial y} = \frac{x}{\sqrt{1 - x^2y^2}}∂y∂z=1−x2y2x(3)∂z∂x=yexyarctan(y)\frac{\partial z}{\partial x} = ye^{xy}\arctan(y)∂x∂z=yexyarctan(y)∂z∂y=xexyarctan(y)+exy1+y2\frac{\partial z}{\partial y} = xe^{xy}\arctan(y) + \frac{e^{xy}}{1+y^2}∂y∂z=xexyarctan(y)+1+y2exy(4)∂z∂x=ylog(2x+y)+2xy2x+y\frac{\partial z}{\partial x} = y\log(2x + y) + \frac{2xy}{2x + y}∂x∂z=ylog(2x+y)+2x+y2xy∂z∂y=xlog(2x+y)+xy2x+y\frac{\partial z}{\partial y} = x\log(2x + y) + \frac{xy}{2x + y}∂y∂z=xlog(2x+y)+2x+yxy