$\sum_{k=1}^{n} (k^2 - 3k + 2)$ を計算する問題です。代数学シグマ数列公式展開計算2025/7/271. 問題の内容∑k=1n(k2−3k+2)\sum_{k=1}^{n} (k^2 - 3k + 2)∑k=1n(k2−3k+2) を計算する問題です。2. 解き方の手順シグマの性質を利用して、それぞれの項に分解します。∑k=1n(k2−3k+2)=∑k=1nk2−3∑k=1nk+2∑k=1n1\sum_{k=1}^{n} (k^2 - 3k + 2) = \sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + 2\sum_{k=1}^{n} 1∑k=1n(k2−3k+2)=∑k=1nk2−3∑k=1nk+2∑k=1n1それぞれのシグマの公式を適用します。∑k=1nk2=16n(n+1)(2n+1)\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)∑k=1nk2=61n(n+1)(2n+1)∑k=1nk=12n(n+1)\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)∑k=1nk=21n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nこれらの公式を代入します。∑k=1n(k2−3k+2)=16n(n+1)(2n+1)−3⋅12n(n+1)+2n\sum_{k=1}^{n} (k^2 - 3k + 2) = \frac{1}{6}n(n+1)(2n+1) - 3 \cdot \frac{1}{2}n(n+1) + 2n∑k=1n(k2−3k+2)=61n(n+1)(2n+1)−3⋅21n(n+1)+2n式を整理します。16n(n+1)(2n+1)−32n(n+1)+2n=16n[(n+1)(2n+1)−9(n+1)+12]\frac{1}{6}n(n+1)(2n+1) - \frac{3}{2}n(n+1) + 2n = \frac{1}{6}n[(n+1)(2n+1) - 9(n+1) + 12]61n(n+1)(2n+1)−23n(n+1)+2n=61n[(n+1)(2n+1)−9(n+1)+12]=16n[2n2+3n+1−9n−9+12]=16n[2n2−6n+4]= \frac{1}{6}n[2n^2 + 3n + 1 - 9n - 9 + 12] = \frac{1}{6}n[2n^2 - 6n + 4]=61n[2n2+3n+1−9n−9+12]=61n[2n2−6n+4]=16n⋅2(n2−3n+2)=13n(n2−3n+2)= \frac{1}{6}n \cdot 2(n^2 - 3n + 2) = \frac{1}{3}n(n^2 - 3n + 2)=61n⋅2(n2−3n+2)=31n(n2−3n+2)=13n(n−1)(n−2)= \frac{1}{3}n(n-1)(n-2)=31n(n−1)(n−2)3. 最終的な答え13n(n−1)(n−2)\frac{1}{3}n(n-1)(n-2)31n(n−1)(n−2)