$\theta = \frac{11}{6}\pi$ のとき、$\sin \theta$, $\cos \theta$, $\tan \theta$ の値をそれぞれ求める。その他三角関数角度sincostan三角比2025/7/281. 問題の内容θ=116π\theta = \frac{11}{6}\piθ=611π のとき、sinθ\sin \thetasinθ, cosθ\cos \thetacosθ, tanθ\tan \thetatanθ の値をそれぞれ求める。2. 解き方の手順θ=116π\theta = \frac{11}{6}\piθ=611π は、116π=2π−π6\frac{11}{6}\pi = 2\pi - \frac{\pi}{6}611π=2π−6π と表せるので、π6\frac{\pi}{6}6π を基準に考えることができる。これは、第4象限の角である。sinθ=sin(116π)=sin(2π−π6)=−sin(π6)\sin \theta = \sin(\frac{11}{6}\pi) = \sin(2\pi - \frac{\pi}{6}) = -\sin(\frac{\pi}{6})sinθ=sin(611π)=sin(2π−6π)=−sin(6π)sin(π6)=12\sin(\frac{\pi}{6}) = \frac{1}{2}sin(6π)=21 なので、sinθ=−12\sin \theta = -\frac{1}{2}sinθ=−21cosθ=cos(116π)=cos(2π−π6)=cos(π6)\cos \theta = \cos(\frac{11}{6}\pi) = \cos(2\pi - \frac{\pi}{6}) = \cos(\frac{\pi}{6})cosθ=cos(611π)=cos(2π−6π)=cos(6π)cos(π6)=32\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}cos(6π)=23 なので、cosθ=32\cos \theta = \frac{\sqrt{3}}{2}cosθ=23tanθ=tan(116π)=tan(2π−π6)=−tan(π6)\tan \theta = \tan(\frac{11}{6}\pi) = \tan(2\pi - \frac{\pi}{6}) = -\tan(\frac{\pi}{6})tanθ=tan(611π)=tan(2π−6π)=−tan(6π)tan(π6)=13=33\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}tan(6π)=31=33 なので、tanθ=−33\tan \theta = -\frac{\sqrt{3}}{3}tanθ=−333. 最終的な答えsinθ=−12\sin \theta = -\frac{1}{2}sinθ=−21cosθ=32\cos \theta = \frac{\sqrt{3}}{2}cosθ=23tanθ=−33\tan \theta = -\frac{\sqrt{3}}{3}tanθ=−33