2次関数のグラフがx軸と2点(-2, 0), (1, 0)で交わり、点(0, -4)を通るとき、その2次関数を求めよ。

代数学二次関数グラフ方程式解法
2025/4/4

1. 問題の内容

2次関数のグラフがx軸と2点(-2, 0), (1, 0)で交わり、点(0, -4)を通るとき、その2次関数を求めよ。

2. 解き方の手順

2次関数のグラフがx軸と2点(-2, 0), (1, 0)で交わるので、求める2次関数は、ある定数 aa を用いて
y=a(x+2)(x1)y = a(x + 2)(x - 1)
と表すことができます。
次に、このグラフが点(0, -4)を通ることから、x=0x = 0, y=4y = -4を代入して、aaの値を求めます。
4=a(0+2)(01)-4 = a(0 + 2)(0 - 1)
4=a(2)(1)-4 = a(2)(-1)
4=2a-4 = -2a
a=2a = 2
したがって、求める2次関数は
y=2(x+2)(x1)y = 2(x + 2)(x - 1)
y=2(x2+2xx2)y = 2(x^2 + 2x - x - 2)
y=2(x2+x2)y = 2(x^2 + x - 2)
y=2x2+2x4y = 2x^2 + 2x - 4

3. 最終的な答え

y=2x2+2x4y = 2x^2 + 2x - 4

「代数学」の関連問題

問題は2つあります。 (3) $4x+3y+6=3x-y-1=4$ を満たす $x, y$ を求める問題。 (6) $\begin{cases} 4x+5y=5 \\ 2x+3y=1 \end{cas...

連立方程式線形方程式代入法
2025/8/1

次の連立方程式を解きます。 $ \begin{cases} 4x + 5y = 5 \\ 2x + 3y = 1 \end{cases} $

連立方程式加減法代入法
2025/8/1

はい、承知いたしました。画像にある連立方程式の問題のうち、(1),(2),(4),(5),(7),(8)について解答します。

連立方程式方程式
2025/8/1

## 1. 問題の内容

連立方程式2元1次方程式方程式の解
2025/8/1

与えられた連立方程式 (3), (4), (5) を解く問題です。 (3) $ \begin{cases} x + y + 3z = 0 \\ x - y + z = -3 \\ x + 2y + 4...

連立方程式線形代数解の存在パラメータ
2025/8/1

AさんとBさんが10回じゃんけんをした。勝った人には3ポイント、あいこのときは二人に1ポイント、負けた人には-2ポイント。Aさんのポイントは9、Bさんのポイントは4だった。 (1) Aさんが勝った回数...

連立方程式文章問題線形代数
2025/8/1

AさんとBさんが10回じゃんけんをした。勝った人には3ポイント、あいこのときは二人に1ポイント、負けた人には-2ポイントが与えられる。Aさんの合計ポイントは9点、Bさんの合計ポイントは4点だった。 (...

連立方程式文章問題ポイント計算
2025/8/1

以下の連立不等式を解く問題です。 $\begin{cases} x^2 + 4x - 5 \le 0 \\ x^2 - 4x > 0 \end{cases}$

連立不等式二次不等式因数分解不等式の解
2025/8/1

与えられた連立方程式を解きます。連立方程式は次の通りです。 $$\begin{cases} x - \frac{y}{2} = 4 \\ \frac{x}{3} + y = -1 \end{cases...

連立方程式代入法方程式
2025/8/1

バスケットボールの試合で、あるチームは2点シュートを $x$ 本、3点シュートを $y$ 本入れ、合計30本、合計64点を得点した。 (1) $x$ と $y$ の関係式を求める。 (2) 点数の関係...

連立方程式文章問題方程式
2025/8/1