$a$ が正の定数のとき、$(a^x)' = a^x \log a$ であることを証明する。

解析学指数関数微分対数
2025/7/28

1. 問題の内容

aa が正の定数のとき、(ax)=axloga(a^x)' = a^x \log a であることを証明する。

2. 解き方の手順

まず、y=axy = a^x とおく。両辺の自然対数をとると、
logy=logax=xloga\log y = \log a^x = x \log a
となる。
次に、この両辺を xx で微分する。
1ydydx=loga\frac{1}{y} \frac{dy}{dx} = \log a
したがって、
dydx=yloga=axloga\frac{dy}{dx} = y \log a = a^x \log a
となる。
よって、
(ax)=axloga(a^x)' = a^x \log a
が証明された。

3. 最終的な答え

(ax)=axloga(a^x)' = a^x \log a

「解析学」の関連問題

次の2つの不定積分を求めます。 (1) $\int 2x(x^2 + 1)^{-3} dx$ (2) $\int \frac{2x+1}{x^2+x+1} dx$

不定積分置換積分積分
2025/7/29

不定積分 $\int xe^{x^2} dx$ を計算する問題です。

不定積分置換積分指数関数
2025/7/29

与えられた二つの定積分を計算します。 問題1: $\int_{-2}^{2} (x^2 + 4) dx$ 問題2: $\int_{-3}^{3} \frac{2x}{x^2 + 1} dx$

定積分積分置換積分奇関数
2025/7/29

$\int \tan^2 x \, dx$ を計算する問題です。

積分三角関数不定積分
2025/7/29

連続関数 $f(x)$ に対して、$\frac{d}{dx} \int_{1-x^2}^{1+x^2} f(t) dt$ を求める問題です。

微分積分微分積分学の基本定理合成関数の微分
2025/7/29

次の関数の増減と凹凸を調べてグラフを描き、極値と変曲点を求める問題です。 (1) $y = x^3 - 3x + 1$ (2) $y = x^4 - 4x^3 + 3$ (3) $y = \frac{...

微分増減凹凸グラフ極値変曲点
2025/7/29

次の極限を求めます。 $\lim_{n \to \infty} \frac{1}{n^{10}} ((n+1)^9 + (n+2)^9 + \dots + (n+n)^9)$

極限リーマン和積分
2025/7/29

与えられた極限を計算します。問題は次の通りです。 $\lim_{n \to \infty} \frac{1}{n} \left( \sin \frac{\pi}{n} + \sin \frac{2\p...

極限リーマン和定積分三角関数
2025/7/29

与えられた5つの定積分を計算する問題です。 問1: $\int_{-1}^{2} (x^2 + x) dx$ 問2: $\int_{1}^{4} \sqrt{x} dx$ 問3: $\int_{3}^...

定積分積分
2025/7/29

以下の4つの不定積分を計算する問題です。 問1: $\int x^{-3} dx$ 問2: $\int \sqrt[4]{x^3} dx$ 問3: $\int (\frac{2}{x} + \frac...

不定積分積分べき関数指数関数対数関数
2025/7/29