数列 $1, 1+2, 1+2+2^2, \dots$ の初項から第 $n$ 項までの和を求める。

代数学数列等比数列シグマ
2025/7/28

1. 問題の内容

数列 1,1+2,1+2+22,1, 1+2, 1+2+2^2, \dots の初項から第 nn 項までの和を求める。

2. 解き方の手順

まず、数列の一般項 aka_k を求める。
ak=1+2+22++2k1a_k = 1 + 2 + 2^2 + \dots + 2^{k-1} は初項1, 公比2, 項数kの等比数列の和であるから、
ak=1(2k1)21=2k1a_k = \frac{1(2^k - 1)}{2-1} = 2^k - 1
次に、初項から第 nn 項までの和 SnS_n を求める。
Sn=k=1nak=k=1n(2k1)=k=1n2kk=1n1S_n = \sum_{k=1}^{n} a_k = \sum_{k=1}^{n} (2^k - 1) = \sum_{k=1}^{n} 2^k - \sum_{k=1}^{n} 1
k=1n2k\sum_{k=1}^{n} 2^k は初項2, 公比2, 項数nの等比数列の和であるから、
k=1n2k=2(2n1)21=2(2n1)=2n+12\sum_{k=1}^{n} 2^k = \frac{2(2^n - 1)}{2-1} = 2(2^n - 1) = 2^{n+1} - 2
k=1n1=n\sum_{k=1}^{n} 1 = n
したがって、
Sn=(2n+12)n=2n+1n2S_n = (2^{n+1} - 2) - n = 2^{n+1} - n - 2

3. 最終的な答え

2n+1n22^{n+1} - n - 2

「代数学」の関連問題

実数 $a$ を定数とし、$x$ の関数 $f(x) = ax^2 + 4ax + a^2 - 1$ を考える。区間 $-4 \leq x \leq 1$ における関数 $f(x)$ の最大値が $5...

二次関数最大値平方完成放物線
2025/7/28

実数 $a$ を定数とし、$x$ の関数 $f(x) = ax^2 + 4ax + a^2 - 1$ を考える。区間 $-4 \le x \le 1$ における関数 $f(x)$ の最大値が5であると...

二次関数最大値平方完成場合分け
2025/7/28

2次関数 $y = ax^2 + bx + 1$ が $x = -1$ のとき最大値3をとる。このとき、$a$ と $b$ の値を求める。

二次関数最大値最小値絶対値平方完成
2025/7/28

$1 \le x \le 27$ のとき、関数 $y = (\log_3 x)^2 - \log_3 x^2 - 3$ の最大値と最小値を求め、そのときの $x$ の値を求める。

対数最大値最小値二次関数不等式
2025/7/28

与えられた二次不等式を解く問題です。具体的には、以下の不等式を解きます。 (1) $x^2 + 5x - 6 > 0$ (2) $x^2 - 3x - 10 \ge 0$ (3) $x^2 - 8x ...

二次不等式因数分解不等式
2025/7/28

問題36は2次方程式の実数解の個数を求める問題で、問題7は2次不等式を解く問題です。 問題36は、 (1) $x^2 + 7x + 1 = 0$ (2) $4x^2 - 10x + 15 = 0$ 問...

二次方程式二次不等式判別式解の個数因数分解
2025/7/28

与えられた2つの関数のグラフを描く問題です。 (1) $y = \frac{3x - 4}{x - 2}$ (2) $y = \frac{1 - 2x}{x + 2}$

分数関数グラフ双曲線漸近線
2025/7/28

関数 $f(x) = 2 \cdot 4^x - 3 \cdot 2^{x+2} - 3 \cdot 2^{-x} + 2 \cdot 4^{-x}$ について、$t = 2^x + 2^{-x}$ ...

指数関数最小値変数変換
2025/7/28

問題82の(1)と(2)の関数について、グラフを描く問題です。 (1) $y = \frac{3x - 4}{x - 2}$ (2) $y = \frac{1 - 2x}{x + 2}$

分数関数グラフ双曲線漸近線平行移動
2025/7/28

この問題は、まず $x$ についての2つの不等式を与え、それらを解くことを要求しています。その後、これらの不等式を同時に満たす整数 $x$ がちょうど1個となるような $a$ の範囲を求めます。また、...

不等式二次不等式絶対値直線接線方程式数式処理
2025/7/28