次の不定積分を求めなさい。 $\int 3x^3 dx$

解析学不定積分積分微積分
2025/4/5

1. 問題の内容

次の不定積分を求めなさい。
3x3dx\int 3x^3 dx

2. 解き方の手順

不定積分の公式 xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C を利用します。
ここで、CCは積分定数です。
定数倍の性質より、3x3dx=3x3dx\int 3x^3 dx = 3 \int x^3 dxとなります。
したがって、
3x3dx=3x3+13+1+C=3x44+C=34x4+C3 \int x^3 dx = 3 \cdot \frac{x^{3+1}}{3+1} + C = 3 \cdot \frac{x^4}{4} + C = \frac{3}{4} x^4 + C

3. 最終的な答え

34x4+C\frac{3}{4}x^4 + C

「解析学」の関連問題

与えられた関数について、$n$次導関数を求める問題です ($n \geq 1$)。具体的には、以下の8つの関数について、$n$次導関数を求める必要があります。 (1) $y = \frac{1}{1+...

導関数n次導関数微分ライプニッツの公式
2025/8/2

与えられた8個の関数について、n次導関数(n ≧ 1)を求めよ。

微分高階導関数ライプニッツの公式
2025/8/2

関数 $y = x^2 e^{2x}$ の $n$ 次導関数($n \geq 1$)を求めます。

導関数ライプニッツの公式微分指数関数二項係数
2025/8/2

関数 $y = x^2 e^{2x}$ の $n$ 次導関数 $(n \ge 1)$ を求めよ。

導関数ライプニッツの公式指数関数微分
2025/8/2

関数 $y = x^2e^{2x}$ の $n$ 次導関数を求める。

導関数微分数学的帰納法数列
2025/8/2

与えられた情報を基に、関数の性質や値を求める問題のようです。具体的には、以下の点が読み取れます。 * 「第3問」と書かれている * 数学II、数学B、数学Iと書かれている * 空欄を埋める...

微分関数導関数増減数学II数学B数学I
2025/8/2

問題2.3の(4)について、関数 $y = x^2 e^{2x}$ の $n$ 次導関数を求める。ただし、$n \geq 1$ である。

微分導関数指数関数二項定理数学的帰納法
2025/8/2

定積分 $\int_{1}^{3} \frac{2+4x^3}{x+x^4} dx$ を計算します。

定積分部分分数分解置換積分積分計算
2025/8/2

(1) 関数 $y = \frac{2}{3}x^3 + x^2 - 4x + \frac{1}{3}$ の増減表を作り、グラフを描け。 (2) 関数 $y = x^2$ について、$x = -3$ ...

関数の増減接線不等式実数解の個数最大値と最小値グラフ
2025/8/2

$\frac{\cos x}{x^2}$ の導関数を求める問題です。

微分導関数三角関数商の微分公式
2025/8/2