与えられた式 $4x^2 - 12xy + 9y^2$ を因数分解してください。代数学因数分解平方公式多項式2025/7/291. 問題の内容与えられた式 4x2−12xy+9y24x^2 - 12xy + 9y^24x2−12xy+9y2 を因数分解してください。2. 解き方の手順この式は、平方公式 a2−2ab+b2=(a−b)2a^2 - 2ab + b^2 = (a - b)^2a2−2ab+b2=(a−b)2 の形をしていることに気づきます。4x2=(2x)24x^2 = (2x)^24x2=(2x)2, 9y2=(3y)29y^2 = (3y)^29y2=(3y)2 であり、−12xy=−2⋅(2x)⋅(3y)-12xy = -2 \cdot (2x) \cdot (3y)−12xy=−2⋅(2x)⋅(3y) となります。したがって、a=2xa = 2xa=2x、b=3yb = 3yb=3y とおくと、4x2−12xy+9y2=(2x)2−2(2x)(3y)+(3y)24x^2 - 12xy + 9y^2 = (2x)^2 - 2(2x)(3y) + (3y)^24x2−12xy+9y2=(2x)2−2(2x)(3y)+(3y)2平方公式を適用すると、(2x−3y)2(2x - 3y)^2(2x−3y)2 となります。3. 最終的な答え(2x−3y)2(2x - 3y)^2(2x−3y)2