一般項が $a_n = 12n + 3$ で表される数列 $\{a_n\}$ は等差数列である。この数列の初項と公差を求める。

代数学数列等差数列一般項初項公差
2025/7/29

1. 問題の内容

一般項が an=12n+3a_n = 12n + 3 で表される数列 {an}\{a_n\} は等差数列である。この数列の初項と公差を求める。

2. 解き方の手順

まず、初項を求める。初項は n=1n=1 のときの値なので、
a1=12(1)+3=12+3=15a_1 = 12(1) + 3 = 12 + 3 = 15
したがって、初項は15である。
次に、公差を求める。等差数列の公差は、隣り合う項の差である。
a2=12(2)+3=24+3=27a_2 = 12(2) + 3 = 24 + 3 = 27
したがって、公差 dd
d=a2a1=2715=12d = a_2 - a_1 = 27 - 15 = 12
または、an=An+Ba_n = An + Bで表される数列の公差はAAなので、公差は12。

3. 最終的な答え

初項: 15
公差: 12

「代数学」の関連問題

数列 $\{a_n\}$ が漸化式 $a_{n+1} = a_n + 5$ および $a_1 + a_2 + a_3 = 24$ を満たすとき、数列の種類、 $a_2$ と $a_3$ を $a_1$...

数列等差数列漸化式一般項
2025/7/29

ある工場で部品Aと部品Bを昨日合わせて310個製造した。今日は昨日より部品Aを20%増やし、部品Bを10%増やしたところ、全体で46個増えた。昨日の部品Aと部品Bの個数をそれぞれ求める。

文章問題連立方程式割合代数
2025/7/29

数列 $\{a_n\}$ と $\{b_n\}$ があり、$(2+\sqrt{3})^n = a_n + \sqrt{3} b_n$ を満たす。このとき、 (1) $a_4$ と $b_4$ の値を求...

数列漸化式二項定理代数
2025/7/29

$x$ についての方程式 $\frac{x}{x+32} = 0.8$ を解く問題です。

方程式一次方程式分数
2025/7/29

関数 $y = -\frac{1}{2}x + 5$ のグラフ上にある点で、$x$ 座標と $y$ 座標がともに正の整数である点の個数を求める問題です。

一次関数座標平面整数グラフ
2025/7/29

ケーキ5個とプリン7個を買ったところ、3810円を支払った。しかし、店員がケーキとプリンの値段を取り違えて計算したことに気づき、300円返金された。ケーキ1個の値段を $x$ 円、プリン1個の値段を ...

連立方程式文章問題一次方程式
2025/7/29

数列 $\{a_n\}$ が与えられた漸化式 $a_{n+2} = 6a_{n+1} - 9a_n$ と初期条件 $a_1 = 1$, $a_2 = 6$ を満たすとき、以下の問題を解く。 (1) $...

漸化式数列等比数列等差数列一般項
2025/7/29

Aさんは家から1200m離れた公園まで行くのに、最初は分速50mで歩き、途中から分速140mで走った。家を出てから15分後に公園に着いたとき、歩いた道のり$x$と走った道のり$y$を求めなさい。問題文...

連立方程式文章問題道のり速度時間
2025/7/29

関数 $y = -\frac{1}{2}x + 5$ のグラフ上にある点で、$x$座標と$y$座標がともに正の整数となる点の個数を求める問題です。

一次関数整数解グラフ
2025/7/29

ある水族館の入館料について、大人1人900円、中学生1人700円である。大人と中学生合わせて10人で入館したところ、入館料の合計は7400円であった。大人を $x$ 人、中学生を $y$ 人として、以...

連立方程式文章問題方程式
2025/7/29