次の極限を計算する問題です。 $\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^x$

解析学極限指数関数e微積分
2025/7/29

1. 問題の内容

次の極限を計算する問題です。
limx(12x)x\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^x

2. 解き方の手順

この極限は、eeの定義を利用して計算できます。
一般に、limx(1+ax)x=ea\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = e^a が成り立ちます。
今回の問題では、a=2a = -2 と考えることができます。
以下のように変形します。
limx(12x)x=e2\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^x = e^{-2}

3. 最終的な答え

limx(12x)x=e2=1e2\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^x = e^{-2} = \frac{1}{e^2}

「解析学」の関連問題

$\frac{x-18}{4-x^2} = \frac{x-18}{(2-x)(2+x)} = \frac{A}{2-x} + \frac{B}{2+x}$ 両辺に $(2-x)(2+x)$ ...

積分不定積分定積分部分分数分解半角の公式部分積分
2025/7/29

$x$ が十分大きいとき、$\sqrt{x}$も大きくなるので、$\log(1+\sqrt{x}) \approx \log(\sqrt{x}) = \frac{1}{2} \log(x)$ と近似で...

広義積分収束積分評価対数関数
2025/7/29

以下の6つの関数を微分します。 (1) $y = \frac{1}{(3x-2)^2}$ (2) $y = \frac{1}{(x^2+2x+3)^4}$ (3) $y = \sqrt{x^2+4x+...

微分合成関数の微分関数の微分
2025/7/29

$x = r\cos\theta$, $y = \frac{1}{\sqrt{2}}r\sin\theta$ と変数変換します。このときヤコビアンは $J = \begin{vmatrix} \fra...

重積分変数変換微分方程式1階線形微分方程式2階線形微分方程式
2025/7/29

与えられた積分計算と重積分による体積計算を行う問題です。 具体的には、以下の5つの問題を解きます。 (1) $\int \frac{1}{x^2 - 1} dx$ (2) $\int \frac{1}...

積分重積分置換積分部分積分体積計算
2025/7/29

与えられた三角関数の式を簡単にする問題です。 与えられた式は $\sin(\theta + \pi) \cos(\frac{\pi}{2} - \theta) + \cos(-\theta) \cos...

三角関数加法定理恒等式式の簡略化
2025/7/29

関数 $f(x) = x^2 \log x$ の増減、極値、グラフの凹凸、変曲点を調べて、グラフの概形を描く。

関数の増減極値グラフの凹凸変曲点対数関数微分
2025/7/29

$\sin(-\frac{10}{3}\pi)$ の値を求めよ。

三角関数sin角度周期性
2025/7/29

$0 \leq \theta < 2\pi$のとき、次の方程式を解き、また、$\theta$の範囲に制限がないときの解を求めよ。 (1) $\sin \theta = \frac{1}{2}$ (2)...

三角関数三角方程式解の公式
2025/7/29

次の関数を微分せよ。 (1) $y = x^2(3x - 2)^4$ (3) $y = \frac{x}{(3x - 2)^2}$ (5) $y = x\sqrt{4x + 3}$ (7) $y = ...

微分関数の微分
2025/7/29