関数 $y = x^2$ の微分を求める問題です。

解析学微分関数代数
2025/7/29

1. 問題の内容

関数 y=x2y = x^2 の微分を求める問題です。

2. 解き方の手順

微分は、関数 y=xny = x^n について、dy/dx=nxn1dy/dx = nx^{n-1} という公式を使って求めます。
今回の関数は y=x2y = x^2 なので、n=2n = 2 を上記の公式に代入すると、
\frac{dy}{dx} = 2x^{2-1} = 2x^1 = 2x
となります。

3. 最終的な答え

y=x2y = x^2 の微分は 2x2x です。

「解析学」の関連問題

与えられた3つの集合A, B, Cそれぞれについて、上に有界か、下に有界かを判断し、有界である場合は上界または下界を1つずつ答えます。 集合は以下の通りです。 $A = \{2n | n \in \m...

集合有界上界下界実数有理数不等式
2025/7/30

次の広義積分が収束することを示す問題です。 $\int_{0}^{\infty} \frac{\log(1 + \sqrt{x})}{1 + x^2} dx$

広義積分収束変数変換比較判定法
2025/7/30

次の不定積分を求めよ。 $\int \frac{3}{x\sqrt{2x-9}} dx$

積分不定積分置換積分
2025/7/30

定積分 $\int_{0}^{2} \cos \frac{\pi(5t+1)}{6} dt$ を計算してください。

定積分三角関数置換積分
2025/7/30

曲線 $y = \cos x$ ($ \frac{\pi}{2} \le x \le \pi$) と $x$軸、および直線 $x = \pi$で囲まれた図形の面積を求める問題です。

定積分面積三角関数
2025/7/30

不定積分 $\int \frac{\cos x}{\sqrt{4\sin x + 5}} dx$ を計算する。

不定積分置換積分三角関数
2025/7/30

関数 $z = (x^2 + y^2 - 1) \log(x^2 + y^2)$ の $0 < x^2 + y^2 \leq 2$ の範囲におけるグラフの概形を描き、$\frac{\partial z...

偏微分多変数関数グラフ対数関数
2025/7/30

関数 $z = (x^2 + y^2 - 1) \log(x^2 + y^2)$ に対して、$0 < x^2 + y^2$ の範囲で偏微分 $\frac{\partial z}{\partial x}...

偏微分多変数関数対数関数
2025/7/30

$(\frac{2}{3})^{50}$ は小数第何位に初めて 0 でない数が現れるかを求める問題です。

対数常用対数指数小数
2025/7/30

(1) 関数 $f: \mathbb{R} \to \mathbb{R}$ が $a \in \mathbb{R}$ において連続であることの定義を述べる。 (2) 関数 $g: \mathbb{R}...

連続性極限関数の極限ロピタルの定理挟みうちの原理
2025/7/30