$\int x \arctan(x) dx$ を計算します。解析学積分部分積分不定積分arctan(x)2025/7/301. 問題の内容∫xarctan(x)dx\int x \arctan(x) dx∫xarctan(x)dx を計算します。2. 解き方の手順部分積分を用いて計算します。部分積分の公式は ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu です。u=arctan(x)u = \arctan(x)u=arctan(x) と dv=xdxdv = x dxdv=xdx とおくと、du=11+x2dxdu = \frac{1}{1+x^2} dxdu=1+x21dx と v=∫xdx=x22v = \int x dx = \frac{x^2}{2}v=∫xdx=2x2 となります。したがって、∫xarctan(x)dx=x22arctan(x)−∫x22⋅11+x2dx\int x \arctan(x) dx = \frac{x^2}{2} \arctan(x) - \int \frac{x^2}{2} \cdot \frac{1}{1+x^2} dx∫xarctan(x)dx=2x2arctan(x)−∫2x2⋅1+x21dx=x22arctan(x)−12∫x21+x2dx= \frac{x^2}{2} \arctan(x) - \frac{1}{2} \int \frac{x^2}{1+x^2} dx=2x2arctan(x)−21∫1+x2x2dx=x22arctan(x)−12∫1+x2−11+x2dx= \frac{x^2}{2} \arctan(x) - \frac{1}{2} \int \frac{1+x^2-1}{1+x^2} dx=2x2arctan(x)−21∫1+x21+x2−1dx=x22arctan(x)−12∫(1−11+x2)dx= \frac{x^2}{2} \arctan(x) - \frac{1}{2} \int (1 - \frac{1}{1+x^2}) dx=2x2arctan(x)−21∫(1−1+x21)dx=x22arctan(x)−12(x−arctan(x))+C= \frac{x^2}{2} \arctan(x) - \frac{1}{2} (x - \arctan(x)) + C=2x2arctan(x)−21(x−arctan(x))+C=x22arctan(x)−x2+12arctan(x)+C= \frac{x^2}{2} \arctan(x) - \frac{x}{2} + \frac{1}{2} \arctan(x) + C=2x2arctan(x)−2x+21arctan(x)+C=12(x2+1)arctan(x)−x2+C= \frac{1}{2} (x^2 + 1) \arctan(x) - \frac{x}{2} + C=21(x2+1)arctan(x)−2x+C3. 最終的な答え12(x2+1)arctan(x)−x2+C\frac{1}{2} (x^2 + 1) \arctan(x) - \frac{x}{2} + C21(x2+1)arctan(x)−2x+C