問題1
(1) x2+xy+y2=1 2x+y+xdxdy+2ydxdy=0 dxdy(x+2y)=−2x−y dxdy=−x+2y2x+y (2) x3+y3−3xy=0 3x2+3y2dxdy−3y−3xdxdy=0 3y2dxdy−3xdxdy=3y−3x2 dxdy(y2−x)=y−x2 dxdy=y2−xy−x2 (3) x=y2−y+1 1=2ydxdy−dxdy 1=dxdy(2y−1) dxdy=2y−11 (4) x(y2−2y)=1 (y2−2y)+x(2ydxdy−2dxdy)=0 x(2ydxdy−2dxdy)=−y2+2y dxdy(2xy−2x)=−y2+2y dxdy=2xy−2x−y2+2y=2x(y−1)y(2−y) (5) xy−xey=1 y+xdxdy−ey−xeydxdy=0 xdxdy−xeydxdy=ey−y dxdy(x−xey)=ey−y dxdy=x−xeyey−y=x(1−ey)ey−y (6) xy−sin(xy)=1 x2xdxdy−y−cos(xy)(y+xdxdy)=0 x2xdxdy−y−ycos(xy)−xcos(xy)dxdy=0 dxdy(x2x−xcos(xy))=ycos(xy)+x2y dxdy(x1−xcos(xy))=ycos(xy)+x2y dxdy=x1−xcos(xy)ycos(xy)+x2y=x3(x1−xcos(xy))yx2cos(xy)+y=x2−x4cos(xy)yx2cos(xy)+y 問題2は問題文の一部が欠落しており、どの陰関数と点について接線を求めるかが不明であるため、解答できません。