関数 $y = (x^3 + 2x)(x^2 + x + 2)(3x + 1)$ を微分して、$dy/dx$ を求める問題です。解析学微分積の微分多項式2025/7/301. 問題の内容関数 y=(x3+2x)(x2+x+2)(3x+1)y = (x^3 + 2x)(x^2 + x + 2)(3x + 1)y=(x3+2x)(x2+x+2)(3x+1) を微分して、dy/dxdy/dxdy/dx を求める問題です。2. 解き方の手順積の微分公式を使います。3つの関数 u(x),v(x),w(x)u(x), v(x), w(x)u(x),v(x),w(x) の積の微分は、ddx(u(x)v(x)w(x))=u′(x)v(x)w(x)+u(x)v′(x)w(x)+u(x)v(x)w′(x)\frac{d}{dx} (u(x)v(x)w(x)) = u'(x)v(x)w(x) + u(x)v'(x)w(x) + u(x)v(x)w'(x)dxd(u(x)v(x)w(x))=u′(x)v(x)w(x)+u(x)v′(x)w(x)+u(x)v(x)w′(x)です。この問題では、u(x)=x3+2xu(x) = x^3 + 2xu(x)=x3+2xv(x)=x2+x+2v(x) = x^2 + x + 2v(x)=x2+x+2w(x)=3x+1w(x) = 3x + 1w(x)=3x+1とします。まず、各関数の微分を計算します。u′(x)=ddx(x3+2x)=3x2+2u'(x) = \frac{d}{dx}(x^3 + 2x) = 3x^2 + 2u′(x)=dxd(x3+2x)=3x2+2v′(x)=ddx(x2+x+2)=2x+1v'(x) = \frac{d}{dx}(x^2 + x + 2) = 2x + 1v′(x)=dxd(x2+x+2)=2x+1w′(x)=ddx(3x+1)=3w'(x) = \frac{d}{dx}(3x + 1) = 3w′(x)=dxd(3x+1)=3次に、積の微分公式を適用します。dydx=(3x2+2)(x2+x+2)(3x+1)+(x3+2x)(2x+1)(3x+1)+(x3+2x)(x2+x+2)(3)\frac{dy}{dx} = (3x^2 + 2)(x^2 + x + 2)(3x + 1) + (x^3 + 2x)(2x + 1)(3x + 1) + (x^3 + 2x)(x^2 + x + 2)(3)dxdy=(3x2+2)(x2+x+2)(3x+1)+(x3+2x)(2x+1)(3x+1)+(x3+2x)(x2+x+2)(3)これを展開して整理します。dydx=(3x2+2)(3x3+4x2+7x+2)+(x3+2x)(6x2+5x+1)+(x3+2x)(3x2+3x+6)\frac{dy}{dx} = (3x^2+2)(3x^3 + 4x^2 + 7x + 2) + (x^3+2x)(6x^2 + 5x + 1) + (x^3+2x)(3x^2 + 3x + 6)dxdy=(3x2+2)(3x3+4x2+7x+2)+(x3+2x)(6x2+5x+1)+(x3+2x)(3x2+3x+6)dydx=(9x5+12x4+21x3+6x2+6x3+8x2+14x+4)+(6x5+5x4+x3+12x3+10x2+2x)+(3x5+3x4+6x3+6x3+6x2+12x)\frac{dy}{dx} = (9x^5 + 12x^4 + 21x^3 + 6x^2 + 6x^3 + 8x^2 + 14x + 4) + (6x^5 + 5x^4 + x^3 + 12x^3 + 10x^2 + 2x) + (3x^5 + 3x^4 + 6x^3 + 6x^3 + 6x^2 + 12x)dxdy=(9x5+12x4+21x3+6x2+6x3+8x2+14x+4)+(6x5+5x4+x3+12x3+10x2+2x)+(3x5+3x4+6x3+6x3+6x2+12x)dydx=9x5+12x4+27x3+14x2+14x+4+6x5+5x4+13x3+10x2+2x+3x5+3x4+12x3+6x2+12x\frac{dy}{dx} = 9x^5 + 12x^4 + 27x^3 + 14x^2 + 14x + 4 + 6x^5 + 5x^4 + 13x^3 + 10x^2 + 2x + 3x^5 + 3x^4 + 12x^3 + 6x^2 + 12xdxdy=9x5+12x4+27x3+14x2+14x+4+6x5+5x4+13x3+10x2+2x+3x5+3x4+12x3+6x2+12xdydx=(9+6+3)x5+(12+5+3)x4+(27+13+12)x3+(14+10+6)x2+(14+2+12)x+4\frac{dy}{dx} = (9+6+3)x^5 + (12+5+3)x^4 + (27+13+12)x^3 + (14+10+6)x^2 + (14+2+12)x + 4dxdy=(9+6+3)x5+(12+5+3)x4+(27+13+12)x3+(14+10+6)x2+(14+2+12)x+4dydx=18x5+20x4+52x3+30x2+28x+4\frac{dy}{dx} = 18x^5 + 20x^4 + 52x^3 + 30x^2 + 28x + 4dxdy=18x5+20x4+52x3+30x2+28x+43. 最終的な答えdydx=18x5+20x4+52x3+30x2+28x+4\frac{dy}{dx} = 18x^5 + 20x^4 + 52x^3 + 30x^2 + 28x + 4dxdy=18x5+20x4+52x3+30x2+28x+4