与えられた積分 $\int_0^1 \log(1+x^2) \, dx$ を計算します。解析学積分部分積分定積分対数関数arctan2025/7/301. 問題の内容与えられた積分 ∫01log(1+x2) dx\int_0^1 \log(1+x^2) \, dx∫01log(1+x2)dx を計算します。2. 解き方の手順部分積分を用いて解きます。u=log(1+x2)u = \log(1+x^2)u=log(1+x2) および dv=dxdv = dxdv=dx とおくと、du=2x1+x2dxdu = \frac{2x}{1+x^2} dxdu=1+x22xdx および v=xv = xv=x となります。したがって、∫01log(1+x2) dx=[xlog(1+x2)]01−∫01x⋅2x1+x2 dx=[xlog(1+x2)]01−∫012x21+x2 dx\int_0^1 \log(1+x^2) \, dx = \left[ x \log(1+x^2) \right]_0^1 - \int_0^1 x \cdot \frac{2x}{1+x^2} \, dx = \left[ x \log(1+x^2) \right]_0^1 - \int_0^1 \frac{2x^2}{1+x^2} \, dx∫01log(1+x2)dx=[xlog(1+x2)]01−∫01x⋅1+x22xdx=[xlog(1+x2)]01−∫011+x22x2dx[xlog(1+x2)]01=1⋅log(1+12)−0⋅log(1+02)=log2\left[ x \log(1+x^2) \right]_0^1 = 1 \cdot \log(1+1^2) - 0 \cdot \log(1+0^2) = \log 2[xlog(1+x2)]01=1⋅log(1+12)−0⋅log(1+02)=log2∫012x21+x2 dx=∫012(x2+1−1)1+x2 dx=∫012(x2+1)1+x2−21+x2 dx=∫012−21+x2 dx=[2x−2arctan(x)]01=(2(1)−2arctan(1))−(2(0)−2arctan(0))=2−2(π4)=2−π2\int_0^1 \frac{2x^2}{1+x^2} \, dx = \int_0^1 \frac{2(x^2+1-1)}{1+x^2} \, dx = \int_0^1 \frac{2(x^2+1)}{1+x^2} - \frac{2}{1+x^2} \, dx = \int_0^1 2 - \frac{2}{1+x^2} \, dx = \left[ 2x - 2 \arctan(x) \right]_0^1 = (2(1) - 2 \arctan(1)) - (2(0) - 2 \arctan(0)) = 2 - 2(\frac{\pi}{4}) = 2 - \frac{\pi}{2}∫011+x22x2dx=∫011+x22(x2+1−1)dx=∫011+x22(x2+1)−1+x22dx=∫012−1+x22dx=[2x−2arctan(x)]01=(2(1)−2arctan(1))−(2(0)−2arctan(0))=2−2(4π)=2−2πよって、∫01log(1+x2) dx=log2−(2−π2)=log2−2+π2\int_0^1 \log(1+x^2) \, dx = \log 2 - (2 - \frac{\pi}{2}) = \log 2 - 2 + \frac{\pi}{2}∫01log(1+x2)dx=log2−(2−2π)=log2−2+2π3. 最終的な答えlog2−2+π2\log 2 - 2 + \frac{\pi}{2}log2−2+2π