$M$ を定数とする。3変数関数 $f(x, y, z) = \frac{e^{Mr}}{r}$ (ただし $r = \sqrt{x^2 + y^2 + z^2}$)に対して、 $I(x, y, z) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} - M^2 f$ を計算する。

解析学偏微分ラプラシアン多変数関数
2025/7/30

1. 問題の内容

MM を定数とする。3変数関数 f(x,y,z)=eMrrf(x, y, z) = \frac{e^{Mr}}{r} (ただし r=x2+y2+z2r = \sqrt{x^2 + y^2 + z^2})に対して、
I(x,y,z)=2fx2+2fy2+2fz2M2fI(x, y, z) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} - M^2 f を計算する。

2. 解き方の手順

まず、rrx,y,zx, y, z に関する偏微分を計算する。
rx=xr,ry=yr,rz=zr\frac{\partial r}{\partial x} = \frac{x}{r}, \frac{\partial r}{\partial y} = \frac{y}{r}, \frac{\partial r}{\partial z} = \frac{z}{r}
次に、f(x,y,z)f(x, y, z)x,y,zx, y, z に関する1階偏微分を計算する。
fx=MeMrrrxeMrr2rx=eMrr(M1r)xr\frac{\partial f}{\partial x} = \frac{M e^{Mr}}{r} \frac{\partial r}{\partial x} - \frac{e^{Mr}}{r^2} \frac{\partial r}{\partial x} = \frac{e^{Mr}}{r} (M - \frac{1}{r}) \frac{x}{r}
fy=eMrr(M1r)yr\frac{\partial f}{\partial y} = \frac{e^{Mr}}{r} (M - \frac{1}{r}) \frac{y}{r}
fz=eMrr(M1r)zr\frac{\partial f}{\partial z} = \frac{e^{Mr}}{r} (M - \frac{1}{r}) \frac{z}{r}
次に、f(x,y,z)f(x, y, z)x,y,zx, y, z に関する2階偏微分を計算する。
2fx2=x(eMrr(M1r)xr)\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{e^{Mr}}{r} (M - \frac{1}{r}) \frac{x}{r} \right)
=eMrr(M1r)1r+xrx(eMrr(M1r))= \frac{e^{Mr}}{r} (M-\frac{1}{r}) \frac{1}{r} + \frac{x}{r} \frac{\partial}{\partial x} \left( \frac{e^{Mr}}{r} (M-\frac{1}{r}) \right)
=eMrr2(M1r)+xr(MeMrr(M1r)xr+eMrr(1r2)xr)= \frac{e^{Mr}}{r^2} (M-\frac{1}{r}) + \frac{x}{r} \left( \frac{Me^{Mr}}{r} (M-\frac{1}{r}) \frac{x}{r} + \frac{e^{Mr}}{r} (\frac{1}{r^2}) \frac{x}{r} \right)
=eMrr2(M1r)+eMrx2r4(M2Mr+1r2)= \frac{e^{Mr}}{r^2} (M-\frac{1}{r}) + \frac{e^{Mr} x^2}{r^4} (M^2 - \frac{M}{r} + \frac{1}{r^2})
同様に
2fy2=eMrr2(M1r)+eMry2r4(M2Mr+1r2)\frac{\partial^2 f}{\partial y^2} = \frac{e^{Mr}}{r^2} (M-\frac{1}{r}) + \frac{e^{Mr} y^2}{r^4} (M^2 - \frac{M}{r} + \frac{1}{r^2})
2fz2=eMrr2(M1r)+eMrz2r4(M2Mr+1r2)\frac{\partial^2 f}{\partial z^2} = \frac{e^{Mr}}{r^2} (M-\frac{1}{r}) + \frac{e^{Mr} z^2}{r^4} (M^2 - \frac{M}{r} + \frac{1}{r^2})
したがって
2fx2+2fy2+2fz2=3eMrr2(M1r)+eMrr4(x2+y2+z2)(M2Mr+1r2)\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \frac{3e^{Mr}}{r^2} (M-\frac{1}{r}) + \frac{e^{Mr}}{r^4} (x^2+y^2+z^2) (M^2 - \frac{M}{r} + \frac{1}{r^2})
=3eMrr2(M1r)+eMrr2(M2Mr+1r2)= \frac{3e^{Mr}}{r^2} (M-\frac{1}{r}) + \frac{e^{Mr}}{r^2} (M^2 - \frac{M}{r} + \frac{1}{r^2})
=eMrr2(3M3r+M2Mr+1r2)= \frac{e^{Mr}}{r^2} (3M - \frac{3}{r} + M^2 - \frac{M}{r} + \frac{1}{r^2})
=eMrr2(M2+2M/r)= \frac{e^{Mr}}{r^2} (M^2 + 2M/r)
I(x,y,z)=eMrr2(M2+2M/r)M2eMrr=eMrr(M2/r+2M/r2M2)I(x, y, z) = \frac{e^{Mr}}{r^2} (M^2 + 2M/r) - M^2 \frac{e^{Mr}}{r} = \frac{e^{Mr}}{r} (M^2 / r + 2M /r^2 - M^2)
しかし、ラプラシアンを極座標で計算すると、
Δf=1r2r(r2fr)\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial f}{\partial r})
=1r2r(r2reMrr)= \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r} \frac{e^{Mr}}{r})
=1r2r(r2MeMrreMrr2)= \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{Me^{Mr}r - e^{Mr}}{r^2})
=1r2r(MeMreMrr)= \frac{1}{r^2} \frac{\partial}{\partial r} (Me^{Mr} - \frac{e^{Mr}}{r})
=1r2(M2eMr+eMrr2+MeMrr)= \frac{1}{r^2} (M^2 e^{Mr} + \frac{e^{Mr}}{r^2} + \frac{Me^{Mr}}{r})
=eMrr2(M2+Mr)+eMrr4= \frac{e^{Mr}}{r^2} (M^2 + \frac{M}{r}) + \frac{e^{Mr}}{r^4}
Δf=2fx2+2fy2+2fz2=M2f\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = M^2 f
I(x,y,z)=ΔfM2f=0I(x, y, z) = \Delta f - M^2 f = 0

3. 最終的な答え

0