与えられた式 $ \frac{1}{x^2 - y^2} \times \frac{x+y}{x-y} $ を簡約化します。代数学式の簡約化因数分解分数式代数2025/7/301. 問題の内容与えられた式 1x2−y2×x+yx−y \frac{1}{x^2 - y^2} \times \frac{x+y}{x-y} x2−y21×x−yx+y を簡約化します。2. 解き方の手順まず、x2−y2x^2 - y^2x2−y2 を因数分解します。x2−y2=(x+y)(x−y) x^2 - y^2 = (x+y)(x-y) x2−y2=(x+y)(x−y)次に、与えられた式に代入します。1x2−y2×x+yx−y=1(x+y)(x−y)×x+yx−y \frac{1}{x^2 - y^2} \times \frac{x+y}{x-y} = \frac{1}{(x+y)(x-y)} \times \frac{x+y}{x-y} x2−y21×x−yx+y=(x+y)(x−y)1×x−yx+y=x+y(x+y)(x−y)(x−y) = \frac{x+y}{(x+y)(x-y)(x-y)} =(x+y)(x−y)(x−y)x+y(x+y) (x+y) (x+y) を約分します。=1(x−y)(x−y) = \frac{1}{(x-y)(x-y)} =(x−y)(x−y)1=1(x−y)2 = \frac{1}{(x-y)^2} =(x−y)213. 最終的な答え1(x−y)2\frac{1}{(x-y)^2}(x−y)21