三角形ABCにおいて、$\angle ABC = 30^\circ$, $\angle ACB = 135^\circ$, $AC = 2$, $AB = x$, $BC = y$であるとき、$x$と$y$の値を求める。幾何学三角形正弦定理角度辺の長さ2025/7/301. 問題の内容三角形ABCにおいて、∠ABC=30∘\angle ABC = 30^\circ∠ABC=30∘, ∠ACB=135∘\angle ACB = 135^\circ∠ACB=135∘, AC=2AC = 2AC=2, AB=xAB = xAB=x, BC=yBC = yBC=yであるとき、xxxとyyyの値を求める。2. 解き方の手順まず、三角形の内角の和は180∘180^\circ180∘なので、∠BAC\angle BAC∠BACを求める。∠BAC=180∘−∠ABC−∠ACB=180∘−30∘−135∘=15∘\angle BAC = 180^\circ - \angle ABC - \angle ACB = 180^\circ - 30^\circ - 135^\circ = 15^\circ∠BAC=180∘−∠ABC−∠ACB=180∘−30∘−135∘=15∘.次に、正弦定理を用いる。ACsin∠ABC=ABsin∠ACB=BCsin∠BAC\frac{AC}{\sin{\angle ABC}} = \frac{AB}{\sin{\angle ACB}} = \frac{BC}{\sin{\angle BAC}}sin∠ABCAC=sin∠ACBAB=sin∠BACBC.2sin30∘=xsin135∘=ysin15∘\frac{2}{\sin{30^\circ}} = \frac{x}{\sin{135^\circ}} = \frac{y}{\sin{15^\circ}}sin30∘2=sin135∘x=sin15∘y.sin30∘=12\sin{30^\circ} = \frac{1}{2}sin30∘=21.sin135∘=sin(180∘−45∘)=sin45∘=22\sin{135^\circ} = \sin{(180^\circ - 45^\circ)} = \sin{45^\circ} = \frac{\sqrt{2}}{2}sin135∘=sin(180∘−45∘)=sin45∘=22.sin15∘=sin(45∘−30∘)=sin45∘cos30∘−cos45∘sin30∘=22⋅32−22⋅12=6−24\sin{15^\circ} = \sin{(45^\circ - 30^\circ)} = \sin{45^\circ}\cos{30^\circ} - \cos{45^\circ}\sin{30^\circ} = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}sin15∘=sin(45∘−30∘)=sin45∘cos30∘−cos45∘sin30∘=22⋅23−22⋅21=46−2.21/2=x2/2=y(6−2)/4\frac{2}{1/2} = \frac{x}{\sqrt{2}/2} = \frac{y}{(\sqrt{6}-\sqrt{2})/4}1/22=2/2x=(6−2)/4y.4=2x2=4y6−24 = \frac{2x}{\sqrt{2}} = \frac{4y}{\sqrt{6} - \sqrt{2}}4=22x=6−24y.x=422=22x = \frac{4\sqrt{2}}{2} = 2\sqrt{2}x=242=22.y=4(6−2)4=6−2y = \frac{4(\sqrt{6}-\sqrt{2})}{4} = \sqrt{6} - \sqrt{2}y=44(6−2)=6−2.3. 最終的な答えx=22x = 2\sqrt{2}x=22y=6−2y = \sqrt{6} - \sqrt{2}y=6−2