与えられた陰関数 $y$ について、その導関数 $y'$ を求める問題です。以下の6つの関数について解きます。 (1) $x^2 + xy + y^2 = 1$ (2) $x^3 + y^3 - 3xy = 0$ (3) $x = y^2 - y + 1$ (4) $x(y^2 - 2y) = 1$ (5) $xy - xe^y = 1$ (6) $\frac{y}{x} \sin(xy) = 1$
2025/7/31
1. 問題の内容
与えられた陰関数 について、その導関数 を求める問題です。以下の6つの関数について解きます。
(1)
(2)
(3)
(4)
(5)
(6)
2. 解き方の手順
陰関数の微分を行います。 は の関数であることに注意して、各項を で微分し、 について解きます。
(1)
両辺を で微分すると、
(2)
両辺を で微分すると、
(3)
両辺を で微分すると、
(4)
両辺を で微分すると、
(5)
両辺を で微分すると、
(6)
の両辺に をかけると
両辺を で微分すると、
3. 最終的な答え
(1)
(2)
(3)
(4)
(5)
(6)