次の2つの方程式を解きます。 (1) $x^4 - 6x^2 + 1 = 0$ (2) $x^4 + x^2 + 1 = 0$代数学方程式4次方程式複素数解の公式平方根2025/7/311. 問題の内容次の2つの方程式を解きます。(1) x4−6x2+1=0x^4 - 6x^2 + 1 = 0x4−6x2+1=0(2) x4+x2+1=0x^4 + x^2 + 1 = 0x4+x2+1=02. 解き方の手順(1) x4−6x2+1=0x^4 - 6x^2 + 1 = 0x4−6x2+1=0 を解く。x2=tx^2 = tx2=t とおくと、t2−6t+1=0t^2 - 6t + 1 = 0t2−6t+1=0 となる。この2次方程式を解くと、t=6±36−42=6±322=6±422=3±22t = \frac{6 \pm \sqrt{36 - 4}}{2} = \frac{6 \pm \sqrt{32}}{2} = \frac{6 \pm 4\sqrt{2}}{2} = 3 \pm 2\sqrt{2}t=26±36−4=26±32=26±42=3±22x2=3±22x^2 = 3 \pm 2\sqrt{2}x2=3±22 なので、x=±3±22=±(1±2)2=±(1±2)x = \pm \sqrt{3 \pm 2\sqrt{2}} = \pm \sqrt{(1 \pm \sqrt{2})^2} = \pm (1 \pm \sqrt{2})x=±3±22=±(1±2)2=±(1±2)よって、x=1+2,1−2,−1−2,−1+2x = 1 + \sqrt{2}, 1 - \sqrt{2}, -1 - \sqrt{2}, -1 + \sqrt{2}x=1+2,1−2,−1−2,−1+2(2) x4+x2+1=0x^4 + x^2 + 1 = 0x4+x2+1=0 を解く。x4+2x2+1−x2=0x^4 + 2x^2 + 1 - x^2 = 0x4+2x2+1−x2=0(x2+1)2−x2=0(x^2 + 1)^2 - x^2 = 0(x2+1)2−x2=0(x2+1+x)(x2+1−x)=0(x^2 + 1 + x)(x^2 + 1 - x) = 0(x2+1+x)(x2+1−x)=0x2+x+1=0x^2 + x + 1 = 0x2+x+1=0 または x2−x+1=0x^2 - x + 1 = 0x2−x+1=0x2+x+1=0x^2 + x + 1 = 0x2+x+1=0 のとき、x=−1±1−42=−1±−32=−1±i32x = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2}x=2−1±1−4=2−1±−3=2−1±i3x2−x+1=0x^2 - x + 1 = 0x2−x+1=0 のとき、x=1±1−42=1±−32=1±i32x = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1 \pm i\sqrt{3}}{2}x=21±1−4=21±−3=21±i3よって、x=−1±i32,1±i32x = \frac{-1 \pm i\sqrt{3}}{2}, \frac{1 \pm i\sqrt{3}}{2}x=2−1±i3,21±i33. 最終的な答え(1) x=1+2,1−2,−1−2,−1+2x = 1 + \sqrt{2}, 1 - \sqrt{2}, -1 - \sqrt{2}, -1 + \sqrt{2}x=1+2,1−2,−1−2,−1+2(2) x=−1+i32,−1−i32,1+i32,1−i32x = \frac{-1 + i\sqrt{3}}{2}, \frac{-1 - i\sqrt{3}}{2}, \frac{1 + i\sqrt{3}}{2}, \frac{1 - i\sqrt{3}}{2}x=2−1+i3,2−1−i3,21+i3,21−i3