関数 $f(x) = x^2 - 5$ において、$x$ の値が $-1$ から $1$ まで変化するときの平均変化率を求める問題です。

解析学関数平均変化率微分
2025/7/31

1. 問題の内容

関数 f(x)=x25f(x) = x^2 - 5 において、xx の値が 1-1 から 11 まで変化するときの平均変化率を求める問題です。

2. 解き方の手順

平均変化率は、変化の割合を表し、以下の式で計算できます。
平均変化率 = f(x2)f(x1)x2x1\frac{f(x_2) - f(x_1)}{x_2 - x_1}
ここで、x1=1x_1 = -1x2=1x_2 = 1 です。
まず、f(x1)=f(1)f(x_1) = f(-1) を計算します。
f(1)=(1)25=15=4f(-1) = (-1)^2 - 5 = 1 - 5 = -4
次に、f(x2)=f(1)f(x_2) = f(1) を計算します。
f(1)=(1)25=15=4f(1) = (1)^2 - 5 = 1 - 5 = -4
平均変化率の式に代入します。
平均変化率 = f(1)f(1)1(1)=4(4)1(1)=4+41+1=02=0\frac{f(1) - f(-1)}{1 - (-1)} = \frac{-4 - (-4)}{1 - (-1)} = \frac{-4 + 4}{1 + 1} = \frac{0}{2} = 0

3. 最終的な答え

0

「解析学」の関連問題

関数 $y = \sin \theta \cos \theta + \sin \theta + \cos \theta$ について、$t = \sin \theta + \cos \theta$ とお...

三角関数最大値最小値合成二次関数
2025/8/1

$0 \le \theta < \pi$ のとき、関数 $y = \sin^2 2\theta + \cos 2\theta + 1$ の最大値と最小値を求め、それぞれの $\theta$ の値を求め...

三角関数最大値最小値三角関数の合成2倍角の公式平方完成
2025/8/1

## 問題の内容

微分導関数増減極大極小経済モデル連立方程式
2025/8/1

与えられた公式 $F[e^{-ax^2}] = \sqrt{\frac{\pi}{a}}e^{-\frac{u^2}{4a}}$ を用いて、以下の関数のフーリエ変換を求める。 (a) $e^{-\fr...

フーリエ変換積分変換指数関数
2025/8/1

与えられた4つの問題は、積分または微分を計算する問題です。 (1) $\int \frac{\log x}{x} dx$ (2) $\int e^{-\frac{1}{2}x} dx$ (3) $(\...

積分微分置換積分合成関数の微分対数関数指数関数
2025/8/1

広義積分 $\int_{0}^{\infty} xe^{-2x}(1 + \cos x) \, dx$ の収束・発散を調べます。

広義積分収束発散部分積分
2025/8/1

与えられた三角関数の式を簡単にします。問題は全部で4つあります。 (1) $\frac{\sin\theta}{1+\cos\theta} + \frac{1}{\tan\theta}$ (2) $\...

三角関数三角関数の恒等式式の簡略化
2025/8/1

与えられた式 $\frac{\sin\theta}{1+\cos\theta} + \frac{1}{\tan\theta}$ を簡単にせよ。

三角関数式の簡約化三角関数の恒等式
2025/8/1

関数 $f(x)$ が積分を含む方程式 $f(x) = 3x + 2\int_0^1 f(t) dt$ で定義されているとき、$f(x)$ を求める問題です。

積分関数定積分方程式
2025/8/1

$r \to 0$ の極限を求める問題です。 具体的には、以下の式の極限を計算します。 $\lim_{r \to 0} \left[xtan\theta + \frac{mgz}{r r_0 cos\...

極限テイラー展開対数関数
2025/8/1