与えられた連立方程式を解く問題です。連立方程式は以下の通りです。 $ \begin{cases} 6x - y = 1 \\ 3x - 2y = -7 \end{cases} $

代数学連立方程式線形代数方程式の解法
2025/7/31

1. 問題の内容

与えられた連立方程式を解く問題です。連立方程式は以下の通りです。
\begin{cases}
6x - y = 1 \\
3x - 2y = -7
\end{cases}

2. 解き方の手順

以下の手順で連立方程式を解きます。
ステップ1:2番目の式を2倍します。
2(3x - 2y) = 2(-7)
6x - 4y = -14
ステップ2:1番目の式からステップ1の結果を引きます。
(6x - y) - (6x - 4y) = 1 - (-14)
6x - y - 6x + 4y = 1 + 14
3y = 15
ステップ3:yyについて解きます。
y = \frac{15}{3} = 5
ステップ4:y=5y = 5を1番目の式に代入します。
6x - 5 = 1
ステップ5:xxについて解きます。
6x = 1 + 5
6x = 6
x = \frac{6}{6} = 1

3. 最終的な答え

x=1x = 1y=5y = 5

「代数学」の関連問題

2次方程式 $x^2 - ax + a + 3 = 0$ が異なる2つの負の解を持つとき、定数 $a$ の値の範囲を求める。

二次方程式解の範囲判別式解と係数の関係
2025/8/1

与えられた複数の2次方程式を解く問題です。方程式は、因数分解された形、一般形、または少し変形された形で与えられています。

二次方程式因数分解
2025/8/1

与えられた方程式 $2(x+3)(x-3) = x(9-x)$ を解いて、$x$ の値を求めます。

二次方程式方程式解の公式因数分解
2025/8/1

$\sin\theta\cos\theta = -\frac{1}{2}$ ($0^\circ < \theta < 180^\circ$) のとき、以下の値を求めよ。 (1) $\sin\theta...

三角関数三角関数の加法定理三角関数の相互関係
2025/8/1

$\sin \theta \cos \theta = -\frac{1}{2}$ ($0^\circ < \theta < 180^\circ$)のとき、$\sin \theta + \cos \th...

三角関数三角恒等式方程式
2025/8/1

$a, b, x$ は実数、$n$ は自然数とします。次の命題の真偽を調べ、偽のときは反例を1つ示してください。 (1) $a = 0 \implies ab = 0$ (2) $a^2 = 3a \...

命題真偽反例絶対値倍数
2025/8/1

$y$ が $x$ の2乗に比例する関数で、$x$ の値が2から4まで増加するとき、変化の割合が2となる関数の式を求める。

二次関数変化の割合比例
2025/8/1

与えられたグラフは関数 $y=ax^2$ のグラフです。 (1) グラフから $a$ の値を求めます。 (2) $x = \frac{3}{2}$ のとき、$y$ の値を求めます。

二次関数グラフ方程式
2025/8/1

関数 $y = -x^2$ について、次の各場合に $x$ が増加するときの変化の割合を求めます。 (1) $x$ が 2 から 4 まで増加するとき (2) $x$ が -4 から -1 まで増加す...

二次関数変化の割合関数
2025/8/1

(1) 整式 $P(x)$ を $(x+1)^2$ で割ったときの余りが $18x+9$ であり、$x-2$ で割ったときの余りが $9$ であるとき、$P(x)$ を $(x+1)^2(x-2)$ ...

多項式剰余の定理因数定理多項式の割り算
2025/8/1