関数 $f(x) = x^2 - 5$ について、$x$ の値が $-1$ から $1$ まで変化するときの平均変化率を求める問題です。

解析学平均変化率関数微分
2025/7/31

1. 問題の内容

関数 f(x)=x25f(x) = x^2 - 5 について、xx の値が 1-1 から 11 まで変化するときの平均変化率を求める問題です。

2. 解き方の手順

平均変化率は、変化の割合のことで、以下の式で求められます。
平均変化率 = f(b)f(a)ba\frac{f(b) - f(a)}{b - a}
ここで、aa は変化前の xx の値、bb は変化後の xx の値です。
この問題では、a=1a = -1, b=1b = 1 です。
まず、f(1)f(-1)f(1)f(1) を計算します。
f(1)=(1)25=15=4f(-1) = (-1)^2 - 5 = 1 - 5 = -4
f(1)=(1)25=15=4f(1) = (1)^2 - 5 = 1 - 5 = -4
次に、平均変化率の式に代入します。
平均変化率 = f(1)f(1)1(1)=4(4)1(1)=4+41+1=02=0\frac{f(1) - f(-1)}{1 - (-1)} = \frac{-4 - (-4)}{1 - (-1)} = \frac{-4 + 4}{1 + 1} = \frac{0}{2} = 0

3. 最終的な答え

0

「解析学」の関連問題

関数 $y = (\log_2 \frac{4}{x})(\log_2 x - 1)$ について、$\frac{1}{2} \le x \le 4$ の範囲で、$t = \log_2 x$ とおいたと...

対数関数二次関数最大値最小値関数のグラフ
2025/8/1

関数 $y = \log_3(3x+9)$ のグラフが、関数 $y = \log_3 x$ のグラフを $x$ 軸方向にどれだけ、また $y$ 軸方向にどれだけ平行移動したものか、さらに、与えられた関...

対数関数グラフ平行移動交点関数の変形
2025/8/1

$0 \le \theta < 2\pi$ の範囲において、$\sin\frac{2}{3}\theta = \frac{1}{4}$ のとき、$\cos 2\theta$ の値を求める問題です。

三角関数恒等式加法定理cos2θ半角の公式
2025/8/1

周期 $2\pi$ の周期関数 $f(x)$ が与えられています。 $f(x) = \begin{cases} x^2 - \pi x & (0 \le x \le \pi) \\ ? & (-\pi...

フーリエ級数周期関数奇関数積分
2025/8/1

関数 $y = x^3 + 2$ のグラフに点 $C(1, 2)$ から引いた接線の方程式を求める問題です。

微分接線グラフ関数
2025/8/1

関数 $y = x^2 - 2x$ のグラフについて、傾きが4であるような接線の方程式を求めよ。

微分接線導関数関数のグラフ
2025/8/1

関数 $y = \sin \theta \cos \theta + \sin \theta + \cos \theta$ について、$t = \sin \theta + \cos \theta$ とお...

三角関数最大値最小値合成二次関数
2025/8/1

$0 \le \theta < \pi$ のとき、関数 $y = \sin^2 2\theta + \cos 2\theta + 1$ の最大値と最小値を求め、それぞれの $\theta$ の値を求め...

三角関数最大値最小値三角関数の合成2倍角の公式平方完成
2025/8/1

## 問題の内容

微分導関数増減極大極小経済モデル連立方程式
2025/8/1

与えられた公式 $F[e^{-ax^2}] = \sqrt{\frac{\pi}{a}}e^{-\frac{u^2}{4a}}$ を用いて、以下の関数のフーリエ変換を求める。 (a) $e^{-\fr...

フーリエ変換積分変換指数関数
2025/8/1