関数 $y = \sqrt{-2x + a}$ の定義域が $x \leq 5$ となるような定数 $a$ の値を求める問題です。

代数学関数定義域不等式平方根
2025/7/31

1. 問題の内容

関数 y=2x+ay = \sqrt{-2x + a} の定義域が x5x \leq 5 となるような定数 aa の値を求める問題です。

2. 解き方の手順

平方根の中身は0以上でなければならないので、2x+a0-2x + a \geq 0 という条件が成り立ちます。
この不等式を変形すると、
2xa-2x \geq -a
xa2x \leq \frac{a}{2}
この関数の定義域が x5x \leq 5 となるためには、a2=5\frac{a}{2} = 5 である必要があります。
a2=5\frac{a}{2} = 5
両辺に2を掛けて aa について解くと、
a=10a = 10

3. 最終的な答え

a=10a = 10

「代数学」の関連問題

Aさんは10時に家を出て、1600m離れた野球場へ向かいました。途中で忘れ物に気づき、弟と別れて家に戻り、再び野球場へ向かいました。 (1) Aさんが再び家を出てから野球場に着くまでを表すグラフの式と...

一次関数グラフ速さ方程式
2025/8/1

2次関数 $f(x) = x^2 - 4x + a^2 - a$ が与えられています。ここで、$a$ は正の定数です。 (1) $y = f(x)$ のグラフの頂点の座標を $a$ を用いて表します。...

二次関数平方完成最大値最小値2次不等式
2025/8/1

問題は、長さが1の線分AB上に点P, Qを繰り返し定め、APの長さを$x_n$としたときの、$x_n$に関する問題です。具体的には、 (1) PがABの中点のとき、$AP_1$, $BQ_1$, $A...

数列漸化式等比数列不等式
2025/8/1

与えられた数列 $\{a_n\}$ があり、これは $1, 1, 2, 1, 2, 4, 1, 2, 4, 8, \dots$ と続いています。この数列を $1$ 個、 $2$ 個、 $3$ 個、$\...

数列等比数列級数和の計算群数列
2025/8/1

$x:(y+z) = 3:5$ と $\frac{1}{x}:\frac{1}{y} = 4:3$ のとき、$x:y:z$ を最も簡単な整数の比で表す問題です。

比例式連立方程式分数
2025/8/1

$a = \frac{1}{2}$ のとき、$a^2 + \frac{1}{a^2}$ の値を求める問題です。

式の計算代入分数
2025/8/1

連立方程式 $x+y = 5$ と $x-y = \sqrt{3}$ が与えられたとき、$xy$ の値を求めよ。

連立方程式代数計算
2025/8/1

$a$ が $0$ 以上のすべての実数値をとって変わるとき、 $xy$ 平面上の直線 $l_a: y = 2(a-1)x - a^2 + 2$ が通過する領域 $D$ を求め、図示せよ。

二次関数領域不等式判別式放物線
2025/8/1

与えられた式を満たすように、空欄を埋める問題です。 式は次の通りです。 $(-2x)^{\boxed{?}} \div (-3x) \times 6y \div (-4y)^{\boxed{?}} =...

式の計算指数文字式
2025/8/1

空欄を埋める問題です。 $9xy^4 \div (-\frac{1}{3}xy^2) \div \Box xy^{\Box} = xy^3$

式の計算文字式除算分数式
2025/8/1