関数 $y = (x^3 - x)(x^2 + 1)(3x^4 + x^2)$ を微分せよ。解析学微分積の微分関数の微分2025/7/311. 問題の内容関数 y=(x3−x)(x2+1)(3x4+x2)y = (x^3 - x)(x^2 + 1)(3x^4 + x^2)y=(x3−x)(x2+1)(3x4+x2) を微分せよ。2. 解き方の手順積の微分公式を利用して微分します。3つの関数 uuu, vvv, www の積の微分はddx(uvw)=dudxvw+udvdxw+uvdwdx\frac{d}{dx}(uvw) = \frac{du}{dx}vw + u\frac{dv}{dx}w + uv\frac{dw}{dx}dxd(uvw)=dxduvw+udxdvw+uvdxdwで与えられます。まず、各関数を定義します。u=x3−xu = x^3 - xu=x3−xv=x2+1v = x^2 + 1v=x2+1w=3x4+x2w = 3x^4 + x^2w=3x4+x2それぞれの導関数を計算します。dudx=3x2−1\frac{du}{dx} = 3x^2 - 1dxdu=3x2−1dvdx=2x\frac{dv}{dx} = 2xdxdv=2xdwdx=12x3+2x\frac{dw}{dx} = 12x^3 + 2xdxdw=12x3+2x積の微分公式に代入します。dydx=(3x2−1)(x2+1)(3x4+x2)+(x3−x)(2x)(3x4+x2)+(x3−x)(x2+1)(12x3+2x)\frac{dy}{dx} = (3x^2 - 1)(x^2 + 1)(3x^4 + x^2) + (x^3 - x)(2x)(3x^4 + x^2) + (x^3 - x)(x^2 + 1)(12x^3 + 2x)dxdy=(3x2−1)(x2+1)(3x4+x2)+(x3−x)(2x)(3x4+x2)+(x3−x)(x2+1)(12x3+2x)これを展開して整理します。dydx=(3x4+3x2−x2−1)(3x4+x2)+(2x4−2x2)(3x4+x2)+(x5+x3−x3−x)(12x3+2x)\frac{dy}{dx} = (3x^4 + 3x^2 - x^2 - 1)(3x^4 + x^2) + (2x^4 - 2x^2)(3x^4 + x^2) + (x^5 + x^3 - x^3 - x)(12x^3 + 2x)dxdy=(3x4+3x2−x2−1)(3x4+x2)+(2x4−2x2)(3x4+x2)+(x5+x3−x3−x)(12x3+2x)dydx=(3x4+2x2−1)(3x4+x2)+(2x4−2x2)(3x4+x2)+(x5−x)(12x3+2x)\frac{dy}{dx} = (3x^4 + 2x^2 - 1)(3x^4 + x^2) + (2x^4 - 2x^2)(3x^4 + x^2) + (x^5 - x)(12x^3 + 2x)dxdy=(3x4+2x2−1)(3x4+x2)+(2x4−2x2)(3x4+x2)+(x5−x)(12x3+2x)dydx=9x8+3x6+6x6+2x4−3x4−x2+6x8+2x6−6x6−2x4+12x8+2x6−12x4−2x2\frac{dy}{dx} = 9x^8 + 3x^6 + 6x^6 + 2x^4 - 3x^4 - x^2 + 6x^8 + 2x^6 - 6x^6 - 2x^4 + 12x^8 + 2x^6 - 12x^4 - 2x^2dxdy=9x8+3x6+6x6+2x4−3x4−x2+6x8+2x6−6x6−2x4+12x8+2x6−12x4−2x2dydx=(9+6+12)x8+(3+6+2−6+2)x6+(2−3−2−12)x4+(−1−2)x2\frac{dy}{dx} = (9 + 6 + 12)x^8 + (3 + 6 + 2 - 6 + 2)x^6 + (2 - 3 - 2 - 12)x^4 + (-1 - 2)x^2dxdy=(9+6+12)x8+(3+6+2−6+2)x6+(2−3−2−12)x4+(−1−2)x2dydx=27x8+7x6−15x4−3x2\frac{dy}{dx} = 27x^8 + 7x^6 - 15x^4 - 3x^2dxdy=27x8+7x6−15x4−3x23. 最終的な答えdydx=27x8+7x6−15x4−3x2\frac{dy}{dx} = 27x^8 + 7x^6 - 15x^4 - 3x^2dxdy=27x8+7x6−15x4−3x2