与えられた関数 $y = (x^2 + 1)(x^3 + x)(x^4 - x^2)$ を微分して、$dy/dx$ を求めます。解析学微分多項式導関数2025/7/311. 問題の内容与えられた関数 y=(x2+1)(x3+x)(x4−x2)y = (x^2 + 1)(x^3 + x)(x^4 - x^2)y=(x2+1)(x3+x)(x4−x2) を微分して、dy/dxdy/dxdy/dx を求めます。2. 解き方の手順まず、関数を整理します。y=(x2+1)(x3+x)(x4−x2)y = (x^2 + 1)(x^3 + x)(x^4 - x^2)y=(x2+1)(x3+x)(x4−x2)y=(x2+1)(x(x2+1))(x2(x2−1))y = (x^2 + 1)(x(x^2 + 1))(x^2(x^2 - 1))y=(x2+1)(x(x2+1))(x2(x2−1))y=(x2+1)x(x2+1)x2(x2−1)y = (x^2 + 1)x(x^2 + 1)x^2(x^2 - 1)y=(x2+1)x(x2+1)x2(x2−1)y=x3(x2+1)2(x2−1)y = x^3(x^2 + 1)^2(x^2 - 1)y=x3(x2+1)2(x2−1)y=x3(x4+2x2+1)(x2−1)y = x^3(x^4 + 2x^2 + 1)(x^2 - 1)y=x3(x4+2x2+1)(x2−1)y=x3(x6+2x4+x2−x4−2x2−1)y = x^3(x^6 + 2x^4 + x^2 - x^4 - 2x^2 - 1)y=x3(x6+2x4+x2−x4−2x2−1)y=x3(x6+x4−x2−1)y = x^3(x^6 + x^4 - x^2 - 1)y=x3(x6+x4−x2−1)y=x9+x7−x5−x3y = x^9 + x^7 - x^5 - x^3y=x9+x7−x5−x3次に、各項を微分します。dydx=ddx(x9)+ddx(x7)−ddx(x5)−ddx(x3)\frac{dy}{dx} = \frac{d}{dx}(x^9) + \frac{d}{dx}(x^7) - \frac{d}{dx}(x^5) - \frac{d}{dx}(x^3)dxdy=dxd(x9)+dxd(x7)−dxd(x5)−dxd(x3)dydx=9x8+7x6−5x4−3x2\frac{dy}{dx} = 9x^8 + 7x^6 - 5x^4 - 3x^2dxdy=9x8+7x6−5x4−3x23. 最終的な答えdydx=9x8+7x6−5x4−3x2\frac{dy}{dx} = 9x^8 + 7x^6 - 5x^4 - 3x^2dxdy=9x8+7x6−5x4−3x2