関数 $y = \frac{x-1}{x^3+1}$ を微分してください。

解析学微分関数の微分商の微分法
2025/7/31

1. 問題の内容

関数 y=x1x3+1y = \frac{x-1}{x^3+1} を微分してください。

2. 解き方の手順

商の微分公式を用います。商の微分公式は、関数 y=u(x)v(x)y = \frac{u(x)}{v(x)} の微分が y=u(x)v(x)u(x)v(x)v(x)2y' = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} で与えられるというものです。
この問題では、u(x)=x1u(x) = x-1v(x)=x3+1v(x) = x^3+1 となります。
それぞれの微分は、
u(x)=1u'(x) = 1
v(x)=3x2v'(x) = 3x^2
となります。
したがって、yy' は次のようになります。
y=1(x3+1)(x1)3x2(x3+1)2y' = \frac{1 \cdot (x^3+1) - (x-1) \cdot 3x^2}{(x^3+1)^2}
これを整理すると、
y=x3+13x3+3x2(x3+1)2y' = \frac{x^3+1 - 3x^3+3x^2}{(x^3+1)^2}
y=2x3+3x2+1(x3+1)2y' = \frac{-2x^3 + 3x^2 + 1}{(x^3+1)^2}

3. 最終的な答え

2x3+3x2+1(x3+1)2\frac{-2x^3 + 3x^2 + 1}{(x^3+1)^2}

「解析学」の関連問題

## 問題の内容

微分導関数増減極大極小経済モデル連立方程式
2025/8/1

与えられた公式 $F[e^{-ax^2}] = \sqrt{\frac{\pi}{a}}e^{-\frac{u^2}{4a}}$ を用いて、以下の関数のフーリエ変換を求める。 (a) $e^{-\fr...

フーリエ変換積分変換指数関数
2025/8/1

与えられた4つの問題は、積分または微分を計算する問題です。 (1) $\int \frac{\log x}{x} dx$ (2) $\int e^{-\frac{1}{2}x} dx$ (3) $(\...

積分微分置換積分合成関数の微分対数関数指数関数
2025/8/1

広義積分 $\int_{0}^{\infty} xe^{-2x}(1 + \cos x) \, dx$ の収束・発散を調べます。

広義積分収束発散部分積分
2025/8/1

与えられた三角関数の式を簡単にします。問題は全部で4つあります。 (1) $\frac{\sin\theta}{1+\cos\theta} + \frac{1}{\tan\theta}$ (2) $\...

三角関数三角関数の恒等式式の簡略化
2025/8/1

与えられた式 $\frac{\sin\theta}{1+\cos\theta} + \frac{1}{\tan\theta}$ を簡単にせよ。

三角関数式の簡約化三角関数の恒等式
2025/8/1

関数 $f(x)$ が積分を含む方程式 $f(x) = 3x + 2\int_0^1 f(t) dt$ で定義されているとき、$f(x)$ を求める問題です。

積分関数定積分方程式
2025/8/1

$r \to 0$ の極限を求める問題です。 具体的には、以下の式の極限を計算します。 $\lim_{r \to 0} \left[xtan\theta + \frac{mgz}{r r_0 cos\...

極限テイラー展開対数関数
2025/8/1

数列 $a_n = (-\frac{1}{2})^n$ が与えられたとき、和 $a_1 + a_3 + a_5 + \dots + a_{2n+1}$ を求めよ。

数列等比数列級数
2025/8/1

定積分 $\int_{1}^{2} \frac{dx}{e^x - 1}$ を、$t = e^x$ という変数変換を用いて計算します。

定積分変数変換部分分数分解積分計算
2025/8/1