関数 $y = (x^3 + 1)(x-1)(x^2 + x - 2)$ を微分せよ。解析学微分多項式因数分解2025/7/311. 問題の内容関数 y=(x3+1)(x−1)(x2+x−2)y = (x^3 + 1)(x-1)(x^2 + x - 2)y=(x3+1)(x−1)(x2+x−2) を微分せよ。2. 解き方の手順まず、与えられた関数を因数分解します。x3+1=(x+1)(x2−x+1)x^3 + 1 = (x+1)(x^2 - x + 1)x3+1=(x+1)(x2−x+1)x2+x−2=(x+2)(x−1)x^2 + x - 2 = (x+2)(x-1)x2+x−2=(x+2)(x−1)したがって、y=(x+1)(x2−x+1)(x−1)(x+2)(x−1)y = (x+1)(x^2 - x + 1)(x-1)(x+2)(x-1)y=(x+1)(x2−x+1)(x−1)(x+2)(x−1)y=(x+1)(x−1)(x−1)(x+2)(x2−x+1)y = (x+1)(x-1)(x-1)(x+2)(x^2 - x + 1)y=(x+1)(x−1)(x−1)(x+2)(x2−x+1)y=(x+1)(x+2)(x−1)2(x2−x+1)y = (x+1)(x+2)(x-1)^2(x^2-x+1)y=(x+1)(x+2)(x−1)2(x2−x+1)y=(x2+3x+2)(x2−2x+1)(x2−x+1)y = (x^2+3x+2)(x^2-2x+1)(x^2-x+1)y=(x2+3x+2)(x2−2x+1)(x2−x+1)より簡単に計算するために、yyyを展開します。y=(x2+3x+2)(x4−3x3+4x2−3x+1)y = (x^2 + 3x + 2)(x^4 - 3x^3 + 4x^2 - 3x + 1)y=(x2+3x+2)(x4−3x3+4x2−3x+1)y=x6−3x5+4x4−3x3+x2+3x5−9x4+12x3−9x2+3x+2x4−6x3+8x2−6x+2y = x^6 - 3x^5 + 4x^4 - 3x^3 + x^2 + 3x^5 - 9x^4 + 12x^3 - 9x^2 + 3x + 2x^4 - 6x^3 + 8x^2 - 6x + 2y=x6−3x5+4x4−3x3+x2+3x5−9x4+12x3−9x2+3x+2x4−6x3+8x2−6x+2y=x6+(−3+3)x5+(4−9+2)x4+(−3+12−6)x3+(1−9+8)x2+(3−6)x+2y = x^6 + (-3+3)x^5 + (4-9+2)x^4 + (-3+12-6)x^3 + (1-9+8)x^2 + (3-6)x + 2y=x6+(−3+3)x5+(4−9+2)x4+(−3+12−6)x3+(1−9+8)x2+(3−6)x+2y=x6−3x4+3x3−3x+2y = x^6 - 3x^4 + 3x^3 - 3x + 2y=x6−3x4+3x3−3x+2次に、yyyをxxxについて微分します。dydx=ddx(x6−3x4+3x3−3x+2)\frac{dy}{dx} = \frac{d}{dx} (x^6 - 3x^4 + 3x^3 - 3x + 2)dxdy=dxd(x6−3x4+3x3−3x+2)dydx=6x5−12x3+9x2−3\frac{dy}{dx} = 6x^5 - 12x^3 + 9x^2 - 3dxdy=6x5−12x3+9x2−33. 最終的な答えdydx=6x5−12x3+9x2−3\frac{dy}{dx} = 6x^5 - 12x^3 + 9x^2 - 3dxdy=6x5−12x3+9x2−3