不等式 $2^n < 1000$ を満たす最大の整数 $n$ を求めよ。ただし、$\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とする。

代数学不等式対数指数関数常用対数
2025/7/31

1. 問題の内容

不等式 2n<10002^n < 1000 を満たす最大の整数 nn を求めよ。ただし、log102=0.3010\log_{10} 2 = 0.3010, log103=0.4771\log_{10} 3 = 0.4771 とする。

2. 解き方の手順

まず、不等式 2n<10002^n < 1000 の両辺の常用対数(底が10の対数)をとります。
log102n<log101000\log_{10} 2^n < \log_{10} 1000
対数の性質より、log102n=nlog102\log_{10} 2^n = n \log_{10} 2 なので、
nlog102<log101000n \log_{10} 2 < \log_{10} 1000
log101000=log10103=3\log_{10} 1000 = \log_{10} 10^3 = 3 なので、
nlog102<3n \log_{10} 2 < 3
log102=0.3010\log_{10} 2 = 0.3010 を代入すると、
0.3010n<30.3010 n < 3
両辺を 0.30100.3010 で割ると、
n<30.3010=3000301n < \frac{3}{0.3010} = \frac{3000}{301}
3000301\frac{3000}{301} を計算すると、
30003019.966777\frac{3000}{301} \approx 9.966777 \dots
したがって、n<9.966777n < 9.966777 \dots を満たす最大の整数 nn は 9 です。

3. 最終的な答え

9

「代数学」の関連問題

2次関数 $y = x^2 - 6x - 2$ の $a \le x \le a+1$ における最小値を求める問題です。

二次関数最大値最小値場合分け平方完成
2025/7/31

$a$ を定数とする。関数 $f(x) = -x^2 -ax + 2a^2$ ($0 \le x \le 1$) の最大値を求める問題です。

二次関数最大値場合分け平方完成
2025/7/31

2次関数 $f(x) = x^2 - 2ax + 4a + 1$ の最小値を $a$ の関数 $g(a)$ とするとき、$g(a)$ の最大値を求める問題です。

二次関数最大値最小値平方完成
2025/7/31

ある放物線を $x$ 軸に関して対称移動し、次に $x$ 軸方向に $-2$, $y$ 軸方向に $3$ だけ平行移動し、再び $x$ 軸に関して対称移動したところ、放物線 $y = x^2$ が得ら...

二次関数放物線対称移動平行移動関数の変換
2025/7/31

放物線 $y = x^2 - 3x + 4$ を平行移動した結果、新たな放物線ができる。この放物線は点 $(2, 4)$ を通り、頂点が直線 $y = 2x + 1$ 上にある。新たな放物線の方程式を...

二次関数放物線平行移動頂点方程式
2025/7/31

放物線 $y = x^2 + ax + b$ を原点に関して対称移動し、さらにx軸方向に3、y軸方向に6だけ平行移動したところ、放物線 $y = -x^2 + 4x - 7$ が得られた。このとき、$...

放物線平行移動対称移動二次関数係数比較連立方程式
2025/7/31

放物線 $y = x^2 + 4x + 5$ をどのように平行移動させると、放物線 $y = x^2 - 6x + 8$ に重なるかを求める問題です。

二次関数放物線平行移動平方完成
2025/7/31

与えられた行列 $A$ と $B$ に対して、行列方程式 $AX = B$ を満たす行列 $X$ を求める問題です。 具体的には、以下の二つの場合について $X$ を求めます。 (1) $A = \b...

線形代数行列行列方程式掃き出し法
2025/7/31

行列 $A$ と行列 $B$ が与えられています。 $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -4 \\ 1 & 1 & -3 \end{pmatrix}$...

行列行列の積
2025/7/31

2次関数 $y = -(x-3)^2 + 4$ について、指定された定義域におけるグラフを描き、それぞれの定義域における最大値と最小値を求め、その時の $x$ の値を記述する問題です。

二次関数最大値最小値グラフ
2025/7/31