与えられた8つの式を因数分解する問題です。代数学因数分解多項式二次式2025/7/311. 問題の内容与えられた8つの式を因数分解する問題です。2. 解き方の手順(1) 4ax2−12a2x4ax^2 - 12a^2x4ax2−12a2x共通因数 4ax4ax4ax でくくり出す。4ax(x−3a)4ax(x - 3a)4ax(x−3a)(2) a(x−y)−2(y−x)a(x-y) - 2(y-x)a(x−y)−2(y−x)−2(y−x)=+2(x−y)-2(y-x) = +2(x-y)−2(y−x)=+2(x−y) と変形する。a(x−y)+2(x−y)a(x-y) + 2(x-y)a(x−y)+2(x−y)共通因数 (x−y)(x-y)(x−y) でくくり出す。(a+2)(x−y)(a+2)(x-y)(a+2)(x−y)(3) 16a2+24a+916a^2 + 24a + 916a2+24a+9(4a)2+2⋅4a⋅3+32(4a)^2 + 2 \cdot 4a \cdot 3 + 3^2(4a)2+2⋅4a⋅3+32(4a+3)2(4a+3)^2(4a+3)2(4) 36x2y2−4936x^2y^2 - 4936x2y2−49(6xy)2−72(6xy)^2 - 7^2(6xy)2−72(6xy+7)(6xy−7)(6xy+7)(6xy-7)(6xy+7)(6xy−7)(5) 6x2+xy−2y26x^2 + xy - 2y^26x2+xy−2y26x2+4xy−3xy−2y26x^2 + 4xy - 3xy - 2y^26x2+4xy−3xy−2y22x(3x+2y)−y(3x+2y)2x(3x+2y) - y(3x+2y)2x(3x+2y)−y(3x+2y)(2x−y)(3x+2y)(2x-y)(3x+2y)(2x−y)(3x+2y)(6) x4+4x2−5x^4 + 4x^2 - 5x4+4x2−5x2=Xx^2 = Xx2=X と置く。X2+4X−5X^2 + 4X - 5X2+4X−5(X+5)(X−1)(X+5)(X-1)(X+5)(X−1)x2x^2x2 を代入する。(x2+5)(x2−1)(x^2+5)(x^2-1)(x2+5)(x2−1)(x2+5)(x+1)(x−1)(x^2+5)(x+1)(x-1)(x2+5)(x+1)(x−1)(7) 4x2−(y+z)24x^2 - (y+z)^24x2−(y+z)2(2x)2−(y+z)2(2x)^2 - (y+z)^2(2x)2−(y+z)2(2x+(y+z))(2x−(y+z))(2x+(y+z))(2x-(y+z))(2x+(y+z))(2x−(y+z))(2x+y+z)(2x−y−z)(2x+y+z)(2x-y-z)(2x+y+z)(2x−y−z)(8) 2x2+5xy+2y2+5x+y−32x^2 + 5xy + 2y^2 + 5x + y - 32x2+5xy+2y2+5x+y−32x2+(5y+5)x+(2y2+y−3)2x^2 + (5y+5)x + (2y^2+y-3)2x2+(5y+5)x+(2y2+y−3)2y2+y−3=(2y+3)(y−1)2y^2+y-3 = (2y+3)(y-1)2y2+y−3=(2y+3)(y−1)2x2+(5y+5)x+(2y+3)(y−1)2x^2 + (5y+5)x + (2y+3)(y-1)2x2+(5y+5)x+(2y+3)(y−1)(2x+y−1)(x+2y+3)(2x+y-1)(x+2y+3)(2x+y−1)(x+2y+3)3. 最終的な答え(1) 4ax(x−3a)4ax(x-3a)4ax(x−3a)(2) (a+2)(x−y)(a+2)(x-y)(a+2)(x−y)(3) (4a+3)2(4a+3)^2(4a+3)2(4) (6xy+7)(6xy−7)(6xy+7)(6xy-7)(6xy+7)(6xy−7)(5) (2x−y)(3x+2y)(2x-y)(3x+2y)(2x−y)(3x+2y)(6) (x2+5)(x+1)(x−1)(x^2+5)(x+1)(x-1)(x2+5)(x+1)(x−1)(7) (2x+y+z)(2x−y−z)(2x+y+z)(2x-y-z)(2x+y+z)(2x−y−z)(8) (2x+y−1)(x+2y+3)(2x+y-1)(x+2y+3)(2x+y−1)(x+2y+3)