$\sqrt{6}$ の小数部分を $a$ とするとき、 $(a+2)^2$ の値を求めよ。

代数学平方根計算数式展開
2025/8/1

1. 問題の内容

6\sqrt{6} の小数部分を aa とするとき、 (a+2)2(a+2)^2 の値を求めよ。

2. 解き方の手順

まず、6\sqrt{6} の整数部分を求めます。
22=42^2 = 4 であり、32=93^2 = 9 であるため、2<6<32 < \sqrt{6} < 3 となります。
したがって、6\sqrt{6} の整数部分は2です。
次に、小数部分 aa を求めます。
6\sqrt{6} は、整数部分と小数部分の和で表されるので、
a=62a = \sqrt{6} - 2 となります。
したがって、a+2=(62)+2=6a+2 = (\sqrt{6} - 2) + 2 = \sqrt{6} となります。
最後に、(a+2)2(a+2)^2 を計算します。
(a+2)2=(6)2=6(a+2)^2 = (\sqrt{6})^2 = 6

3. 最終的な答え

6

「代数学」の関連問題

2000円を出して、1個160円のチョコレートと1個140円のプリンを合わせて10個買ったところ、おつりが540円でした。チョコレートとプリンをそれぞれ何個買ったかを求める問題です。チョコレートの個数...

方程式文章問題連立方程式一次方程式
2025/8/1

一次関数の直線の式を求める問題です。具体的には、問題1の(6)「$x$ の値が1増加すると $y$ の値は1減少し、$(3, -6)$ を通る」を解きます。

一次関数直線の式傾き座標
2025/8/1

2次方程式 $x^2 + 2ax + 3a + 10 = 0$ が、1より大きい異なる2つの解を持つような定数 $a$ の値の範囲を求める問題です。

二次方程式解の範囲判別式不等式
2025/8/1

2次関数 $y = x^2 + 3mx + m - 2$ のグラフが、$x$ 軸の $x > -3$ の部分と $x < -3$ の部分で交わるような定数 $m$ の値の範囲を求めよ。

二次関数グラフ不等式
2025/8/1

(1) 等差数列 5, 9, 13,... の第何項から 100 より大きくなるかを求める。 (2) 第 2 項が 43、第 9 項が 22 である等差数列において、初めて負となるのは第何項かを求める...

等差数列数列ピタゴラスの定理方程式
2025/8/1

2つの2次方程式 $x^2-(5-a)x+(a-1)^2=0$ と $x^2+(a-4)x-3+a^2=0$ の少なくとも一方が実数解を持つような $a$ の値の範囲を求める問題です。

二次方程式判別式不等式実数解
2025/8/1

2つの2次方程式 $x^2 - (5-a)x + (a-1)^2 = 0$ と $x^2 + (a-4)x - 3 + a^2 = 0$ の少なくとも一方が実数解をもつような $a$ の値の範囲を求め...

二次方程式判別式不等式解の範囲
2025/8/1

2次不等式 $-x^2 + 2kx + 2k - 8 \le 0$ がすべての実数 $x$ で成り立つような定数 $k$ の範囲を求めよ。

二次不等式判別式2次関数
2025/8/1

2次不等式 $4x^2 + 4x + 1 \le 0$ の解を、選択肢①~⑥から選択する問題です。

二次不等式因数分解不等式の解
2025/8/1

2次不等式 $9x^2 + 30x + 14 < 0$ を解き、解の範囲を $-\frac{ウ - \sqrt{エオ}}{カ} < x < -\frac{ウ + \sqrt{エオ}}{カ}$ の形式...

二次不等式二次方程式解の公式不等式の解
2025/8/1