$x = \frac{\sqrt{10} + \sqrt{2}}{2}$ 、$y = \frac{\sqrt{10} - \sqrt{2}}{2}$ のとき、$x^2 - 3xy + y^2$ の値を求めよ。代数学式の計算平方根式の値2025/7/311. 問題の内容x=10+22x = \frac{\sqrt{10} + \sqrt{2}}{2}x=210+2 、y=10−22y = \frac{\sqrt{10} - \sqrt{2}}{2}y=210−2 のとき、x2−3xy+y2x^2 - 3xy + y^2x2−3xy+y2 の値を求めよ。2. 解き方の手順まず、x2x^2x2, y2y^2y2, xyxyxyをそれぞれ計算します。x2=(10+22)2=(10+2)24=10+220+24=12+24×54=12+454=3+5x^2 = (\frac{\sqrt{10} + \sqrt{2}}{2})^2 = \frac{(\sqrt{10} + \sqrt{2})^2}{4} = \frac{10 + 2\sqrt{20} + 2}{4} = \frac{12 + 2\sqrt{4 \times 5}}{4} = \frac{12 + 4\sqrt{5}}{4} = 3 + \sqrt{5}x2=(210+2)2=4(10+2)2=410+220+2=412+24×5=412+45=3+5y2=(10−22)2=(10−2)24=10−220+24=12−24×54=12−454=3−5y^2 = (\frac{\sqrt{10} - \sqrt{2}}{2})^2 = \frac{(\sqrt{10} - \sqrt{2})^2}{4} = \frac{10 - 2\sqrt{20} + 2}{4} = \frac{12 - 2\sqrt{4 \times 5}}{4} = \frac{12 - 4\sqrt{5}}{4} = 3 - \sqrt{5}y2=(210−2)2=4(10−2)2=410−220+2=412−24×5=412−45=3−5xy=(10+22)(10−22)=(10+2)(10−2)4=10−24=84=2xy = (\frac{\sqrt{10} + \sqrt{2}}{2})(\frac{\sqrt{10} - \sqrt{2}}{2}) = \frac{(\sqrt{10} + \sqrt{2})(\sqrt{10} - \sqrt{2})}{4} = \frac{10 - 2}{4} = \frac{8}{4} = 2xy=(210+2)(210−2)=4(10+2)(10−2)=410−2=48=2次に、x2−3xy+y2x^2 - 3xy + y^2x2−3xy+y2を計算します。x2−3xy+y2=(3+5)−3(2)+(3−5)=3+5−6+3−5=6−6+5−5=0x^2 - 3xy + y^2 = (3 + \sqrt{5}) - 3(2) + (3 - \sqrt{5}) = 3 + \sqrt{5} - 6 + 3 - \sqrt{5} = 6 - 6 + \sqrt{5} - \sqrt{5} = 0x2−3xy+y2=(3+5)−3(2)+(3−5)=3+5−6+3−5=6−6+5−5=03. 最終的な答え0