直線 $y = 2ax + b$ において、$1 < x < 5$ の範囲での $y$ の値域が $3 < y < 12$ となるように、定数 $a$, $b$ の値を求める。
2025/8/1
1. 問題の内容
直線 において、 の範囲での の値域が となるように、定数 , の値を求める。
2. 解き方の手順
は直線を表すので、 の符号によって が増加するときの の増減が変わる。
(i) の場合:
のとき、 は最小値 をとる。
のとき、 は最大値 をとる。
したがって、
これを解く。
2番目の式から1番目の式を引くと、
これを1番目の式に代入すると、
(ii) の場合:
のとき、 は最大値 をとる。
のとき、 は最小値 をとる。
したがって、
これを解く。
2番目の式から1番目の式を引くと、
これを1番目の式に代入すると、
3. 最終的な答え
または