$\lim_{x \to 0} \frac{\sin 2x}{\sin 5x}$ を求める問題です。解析学極限三角関数ロピタルの定理2025/7/311. 問題の内容limx→0sin2xsin5x\lim_{x \to 0} \frac{\sin 2x}{\sin 5x}limx→0sin5xsin2x を求める問題です。2. 解き方の手順limx→0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1limx→0xsinx=1 を利用します。まず、sin2xsin5x\frac{\sin 2x}{\sin 5x}sin5xsin2x を次のように変形します。sin2xsin5x=sin2x2x⋅5xsin5x⋅2x5x\frac{\sin 2x}{\sin 5x} = \frac{\sin 2x}{2x} \cdot \frac{5x}{\sin 5x} \cdot \frac{2x}{5x}sin5xsin2x=2xsin2x⋅sin5x5x⋅5x2xここで、各部分の極限を考えます。limx→0sin2x2x=1\lim_{x \to 0} \frac{\sin 2x}{2x} = 1limx→02xsin2x=1limx→0sin5x5x=1\lim_{x \to 0} \frac{\sin 5x}{5x} = 1limx→05xsin5x=1limx→05xsin5x=1limx→0sin5x5x=11=1\lim_{x \to 0} \frac{5x}{\sin 5x} = \frac{1}{\lim_{x \to 0} \frac{\sin 5x}{5x}} = \frac{1}{1} = 1limx→0sin5x5x=limx→05xsin5x1=11=1limx→02x5x=25\lim_{x \to 0} \frac{2x}{5x} = \frac{2}{5}limx→05x2x=52したがって、limx→0sin2xsin5x=limx→0sin2x2x⋅limx→05xsin5x⋅limx→02x5x=1⋅1⋅25=25\lim_{x \to 0} \frac{\sin 2x}{\sin 5x} = \lim_{x \to 0} \frac{\sin 2x}{2x} \cdot \lim_{x \to 0} \frac{5x}{\sin 5x} \cdot \lim_{x \to 0} \frac{2x}{5x} = 1 \cdot 1 \cdot \frac{2}{5} = \frac{2}{5}limx→0sin5xsin2x=limx→02xsin2x⋅limx→0sin5x5x⋅limx→05x2x=1⋅1⋅52=523. 最終的な答え25\frac{2}{5}52