$y = \sin^2(3x + \frac{\pi}{5})$ を微分せよ。解析学微分三角関数合成関数2025/7/311. 問題の内容y=sin2(3x+π5)y = \sin^2(3x + \frac{\pi}{5})y=sin2(3x+5π) を微分せよ。2. 解き方の手順合成関数の微分を使って解きます。y=sin2(3x+π5)y = \sin^2(3x + \frac{\pi}{5})y=sin2(3x+5π) を y=u2y = u^2y=u2, u=sin(v)u = \sin(v)u=sin(v), v=3x+π5v = 3x + \frac{\pi}{5}v=3x+5π と分解します。まず、uuu を vvv で微分すると、dudv=cos(v)\frac{du}{dv} = \cos(v)dvdu=cos(v)次に、vvv を xxx で微分すると、dvdx=3\frac{dv}{dx} = 3dxdv=3最後に、yyy を uuu で微分すると、dydu=2u\frac{dy}{du} = 2ududy=2uしたがって、連鎖律より、dydx=dydu⋅dudv⋅dvdx=2u⋅cos(v)⋅3=6ucos(v)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} = 2u \cdot \cos(v) \cdot 3 = 6u \cos(v)dxdy=dudy⋅dvdu⋅dxdv=2u⋅cos(v)⋅3=6ucos(v)ここで、u=sin(3x+π5)u = \sin(3x + \frac{\pi}{5})u=sin(3x+5π)、v=3x+π5v = 3x + \frac{\pi}{5}v=3x+5π を代入すると、dydx=6sin(3x+π5)cos(3x+π5)\frac{dy}{dx} = 6 \sin(3x + \frac{\pi}{5}) \cos(3x + \frac{\pi}{5})dxdy=6sin(3x+5π)cos(3x+5π)三角関数の公式 2sinθcosθ=sin2θ2\sin\theta \cos\theta = \sin 2\theta2sinθcosθ=sin2θ を使うと、dydx=3⋅2sin(3x+π5)cos(3x+π5)=3sin(2(3x+π5))=3sin(6x+2π5)\frac{dy}{dx} = 3 \cdot 2 \sin(3x + \frac{\pi}{5}) \cos(3x + \frac{\pi}{5}) = 3 \sin(2(3x + \frac{\pi}{5})) = 3 \sin(6x + \frac{2\pi}{5})dxdy=3⋅2sin(3x+5π)cos(3x+5π)=3sin(2(3x+5π))=3sin(6x+52π)3. 最終的な答えdydx=3sin(6x+2π5)\frac{dy}{dx} = 3 \sin(6x + \frac{2\pi}{5})dxdy=3sin(6x+52π)