一般項が $a_n = 12n + 3$ で表される数列 $\{a_n\}$ は等差数列である。この数列の初項と公差を求める問題です。

代数学数列等差数列一般項初項公差
2025/7/31

1. 問題の内容

一般項が an=12n+3a_n = 12n + 3 で表される数列 {an}\{a_n\} は等差数列である。この数列の初項と公差を求める問題です。

2. 解き方の手順

まず、初項 a1a_1 を求めます。n=1n=1 を一般項の式に代入します。
a1=12(1)+3=12+3=15a_1 = 12(1) + 3 = 12 + 3 = 15
次に、第2項 a2a_2 を求めます。n=2n=2 を一般項の式に代入します。
a2=12(2)+3=24+3=27a_2 = 12(2) + 3 = 24 + 3 = 27
等差数列の公差 dd は、隣り合う項の差で求められます。
d=a2a1=2715=12d = a_2 - a_1 = 27 - 15 = 12

3. 最終的な答え

初項:15
公差:12

「代数学」の関連問題

与えられた複数の2次方程式を解く問題です。方程式は、因数分解された形、一般形、または少し変形された形で与えられています。

二次方程式因数分解
2025/8/1

与えられた方程式 $2(x+3)(x-3) = x(9-x)$ を解いて、$x$ の値を求めます。

二次方程式方程式解の公式因数分解
2025/8/1

$\sin\theta\cos\theta = -\frac{1}{2}$ ($0^\circ < \theta < 180^\circ$) のとき、以下の値を求めよ。 (1) $\sin\theta...

三角関数三角関数の加法定理三角関数の相互関係
2025/8/1

$\sin \theta \cos \theta = -\frac{1}{2}$ ($0^\circ < \theta < 180^\circ$)のとき、$\sin \theta + \cos \th...

三角関数三角恒等式方程式
2025/8/1

$a, b, x$ は実数、$n$ は自然数とします。次の命題の真偽を調べ、偽のときは反例を1つ示してください。 (1) $a = 0 \implies ab = 0$ (2) $a^2 = 3a \...

命題真偽反例絶対値倍数
2025/8/1

$y$ が $x$ の2乗に比例する関数で、$x$ の値が2から4まで増加するとき、変化の割合が2となる関数の式を求める。

二次関数変化の割合比例
2025/8/1

与えられたグラフは関数 $y=ax^2$ のグラフです。 (1) グラフから $a$ の値を求めます。 (2) $x = \frac{3}{2}$ のとき、$y$ の値を求めます。

二次関数グラフ方程式
2025/8/1

関数 $y = -x^2$ について、次の各場合に $x$ が増加するときの変化の割合を求めます。 (1) $x$ が 2 から 4 まで増加するとき (2) $x$ が -4 から -1 まで増加す...

二次関数変化の割合関数
2025/8/1

(1) 整式 $P(x)$ を $(x+1)^2$ で割ったときの余りが $18x+9$ であり、$x-2$ で割ったときの余りが $9$ であるとき、$P(x)$ を $(x+1)^2(x-2)$ ...

多項式剰余の定理因数定理多項式の割り算
2025/8/1

与えられた複数の二次方程式を解く問題です。具体的には以下の8つの方程式を解きます。 1. $x^2 + x - 3 = 0$

二次方程式解の公式因数分解
2025/8/1