$\sum_{k=1}^{n} (2k+1)^2$ を求めよ。代数学数列シグマ展開公式2025/7/311. 問題の内容∑k=1n(2k+1)2\sum_{k=1}^{n} (2k+1)^2∑k=1n(2k+1)2 を求めよ。2. 解き方の手順まず、(2k+1)2(2k+1)^2(2k+1)2 を展開します。(2k+1)2=4k2+4k+1(2k+1)^2 = 4k^2 + 4k + 1(2k+1)2=4k2+4k+1したがって、∑k=1n(2k+1)2=∑k=1n(4k2+4k+1)\sum_{k=1}^{n} (2k+1)^2 = \sum_{k=1}^{n} (4k^2 + 4k + 1)∑k=1n(2k+1)2=∑k=1n(4k2+4k+1) となります。シグマの性質より、∑k=1n(4k2+4k+1)=4∑k=1nk2+4∑k=1nk+∑k=1n1\sum_{k=1}^{n} (4k^2 + 4k + 1) = 4\sum_{k=1}^{n} k^2 + 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1∑k=1n(4k2+4k+1)=4∑k=1nk2+4∑k=1nk+∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=n上記の公式を代入すると、4∑k=1nk2+4∑k=1nk+∑k=1n1=4⋅n(n+1)(2n+1)6+4⋅n(n+1)2+n4\sum_{k=1}^{n} k^2 + 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 4 \cdot \frac{n(n+1)(2n+1)}{6} + 4 \cdot \frac{n(n+1)}{2} + n4∑k=1nk2+4∑k=1nk+∑k=1n1=4⋅6n(n+1)(2n+1)+4⋅2n(n+1)+n=2n(n+1)(2n+1)3+2n(n+1)+n= \frac{2n(n+1)(2n+1)}{3} + 2n(n+1) + n=32n(n+1)(2n+1)+2n(n+1)+n=2n(n+1)(2n+1)+6n(n+1)+3n3= \frac{2n(n+1)(2n+1) + 6n(n+1) + 3n}{3}=32n(n+1)(2n+1)+6n(n+1)+3n=n[2(n+1)(2n+1)+6(n+1)+3]3= \frac{n[2(n+1)(2n+1) + 6(n+1) + 3]}{3}=3n[2(n+1)(2n+1)+6(n+1)+3]=n[2(2n2+3n+1)+6n+6+3]3= \frac{n[2(2n^2+3n+1) + 6n + 6 + 3]}{3}=3n[2(2n2+3n+1)+6n+6+3]=n[4n2+6n+2+6n+9]3= \frac{n[4n^2+6n+2 + 6n + 9]}{3}=3n[4n2+6n+2+6n+9]=n(4n2+12n+11)3= \frac{n(4n^2+12n+11)}{3}=3n(4n2+12n+11)3. 最終的な答えn(4n2+12n+11)3\frac{n(4n^2+12n+11)}{3}3n(4n2+12n+11)